NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  anim12dan GIF version

Theorem anim12dan 810
Description: Conjoin antecedents and consequents in a deduction. (Contributed by Mario Carneiro, 12-May-2014.)
Hypotheses
Ref Expression
anim12dan.1 ((φ ψ) → χ)
anim12dan.2 ((φ θ) → τ)
Assertion
Ref Expression
anim12dan ((φ (ψ θ)) → (χ τ))

Proof of Theorem anim12dan
StepHypRef Expression
1 anim12dan.1 . . . 4 ((φ ψ) → χ)
21ex 423 . . 3 (φ → (ψχ))
3 anim12dan.2 . . . 4 ((φ θ) → τ)
43ex 423 . . 3 (φ → (θτ))
52, 4anim12d 546 . 2 (φ → ((ψ θ) → (χ τ)))
65imp 418 1 ((φ (ψ θ)) → (χ τ))
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360
This theorem is referenced by:  xpexr2  5111  isocnv  5492  f1oiso2  5501
  Copyright terms: Public domain W3C validator