New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > anim12dan | GIF version |
Description: Conjoin antecedents and consequents in a deduction. (Contributed by Mario Carneiro, 12-May-2014.) |
Ref | Expression |
---|---|
anim12dan.1 | ⊢ ((φ ∧ ψ) → χ) |
anim12dan.2 | ⊢ ((φ ∧ θ) → τ) |
Ref | Expression |
---|---|
anim12dan | ⊢ ((φ ∧ (ψ ∧ θ)) → (χ ∧ τ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anim12dan.1 | . . . 4 ⊢ ((φ ∧ ψ) → χ) | |
2 | 1 | ex 423 | . . 3 ⊢ (φ → (ψ → χ)) |
3 | anim12dan.2 | . . . 4 ⊢ ((φ ∧ θ) → τ) | |
4 | 3 | ex 423 | . . 3 ⊢ (φ → (θ → τ)) |
5 | 2, 4 | anim12d 546 | . 2 ⊢ (φ → ((ψ ∧ θ) → (χ ∧ τ))) |
6 | 5 | imp 418 | 1 ⊢ ((φ ∧ (ψ ∧ θ)) → (χ ∧ τ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 |
This theorem is referenced by: xpexr2 5111 isocnv 5492 f1oiso2 5501 |
Copyright terms: Public domain | W3C validator |