| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > anim12dan | GIF version | ||
| Description: Conjoin antecedents and consequents in a deduction. (Contributed by Mario Carneiro, 12-May-2014.) |
| Ref | Expression |
|---|---|
| anim12dan.1 | ⊢ ((φ ∧ ψ) → χ) |
| anim12dan.2 | ⊢ ((φ ∧ θ) → τ) |
| Ref | Expression |
|---|---|
| anim12dan | ⊢ ((φ ∧ (ψ ∧ θ)) → (χ ∧ τ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anim12dan.1 | . . . 4 ⊢ ((φ ∧ ψ) → χ) | |
| 2 | 1 | ex 423 | . . 3 ⊢ (φ → (ψ → χ)) |
| 3 | anim12dan.2 | . . . 4 ⊢ ((φ ∧ θ) → τ) | |
| 4 | 3 | ex 423 | . . 3 ⊢ (φ → (θ → τ)) |
| 5 | 2, 4 | anim12d 546 | . 2 ⊢ (φ → ((ψ ∧ θ) → (χ ∧ τ))) |
| 6 | 5 | imp 418 | 1 ⊢ ((φ ∧ (ψ ∧ θ)) → (χ ∧ τ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 358 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 df-an 360 |
| This theorem is referenced by: xpexr2 5111 isocnv 5492 f1oiso2 5501 |
| Copyright terms: Public domain | W3C validator |