New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > anim12d | GIF version |
Description: Conjoin antecedents and consequents in a deduction. (Contributed by NM, 3-Apr-1994.) (Proof shortened by Wolf Lammen, 18-Dec-2013.) |
Ref | Expression |
---|---|
anim12d.1 | ⊢ (φ → (ψ → χ)) |
anim12d.2 | ⊢ (φ → (θ → τ)) |
Ref | Expression |
---|---|
anim12d | ⊢ (φ → ((ψ ∧ θ) → (χ ∧ τ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anim12d.1 | . 2 ⊢ (φ → (ψ → χ)) | |
2 | anim12d.2 | . 2 ⊢ (φ → (θ → τ)) | |
3 | idd 21 | . 2 ⊢ (φ → ((χ ∧ τ) → (χ ∧ τ))) | |
4 | 1, 2, 3 | syl2and 469 | 1 ⊢ (φ → ((ψ ∧ θ) → (χ ∧ τ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 |
This theorem is referenced by: anim1d 547 anim2d 548 prth 554 im2anan9 808 anim12dan 810 3anim123d 1259 2euswap 2280 ssunsn2 3866 leltfintr 4459 ltfintr 4460 xp11 5057 2elresin 5195 fun 5237 dff13 5472 isotr 5496 enmap2lem4 6067 enmap1lem4 6073 nnltp1c 6263 nchoicelem17 6306 fnfrec 6321 |
Copyright terms: Public domain | W3C validator |