NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  xpexr2 GIF version

Theorem xpexr2 5111
Description: If a nonempty cross product is a set, so are both of its components. (Contributed by set.mm contributors, 27-Aug-2006.) (Revised by set.mm contributors, 5-May-2007.)
Assertion
Ref Expression
xpexr2 (((A × B) C (A × B) ≠ ) → (A V B V))

Proof of Theorem xpexr2
StepHypRef Expression
1 xpnz 5046 . 2 ((A B) ↔ (A × B) ≠ )
2 dmxp 4924 . . . . . 6 (B → dom (A × B) = A)
32adantl 452 . . . . 5 (((A × B) C B) → dom (A × B) = A)
4 dmexg 5106 . . . . . 6 ((A × B) C → dom (A × B) V)
54adantr 451 . . . . 5 (((A × B) C B) → dom (A × B) V)
63, 5eqeltrrd 2428 . . . 4 (((A × B) C B) → A V)
7 rnxp 5052 . . . . . 6 (A → ran (A × B) = B)
87adantl 452 . . . . 5 (((A × B) C A) → ran (A × B) = B)
9 rnexg 5105 . . . . . 6 ((A × B) C → ran (A × B) V)
109adantr 451 . . . . 5 (((A × B) C A) → ran (A × B) V)
118, 10eqeltrrd 2428 . . . 4 (((A × B) C A) → B V)
126, 11anim12dan 810 . . 3 (((A × B) C (B A)) → (A V B V))
1312ancom2s 777 . 2 (((A × B) C (A B)) → (A V B V))
141, 13sylan2br 462 1 (((A × B) C (A × B) ≠ ) → (A V B V))
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358   = wceq 1642   wcel 1710  wne 2517  Vcvv 2860  c0 3551   × cxp 4771  dom cdm 4773  ran crn 4774
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-reu 2622  df-rmo 2623  df-rab 2624  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-pss 3262  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-iota 4340  df-0c 4378  df-addc 4379  df-nnc 4380  df-fin 4381  df-lefin 4441  df-ltfin 4442  df-ncfin 4443  df-tfin 4444  df-evenfin 4445  df-oddfin 4446  df-sfin 4447  df-spfin 4448  df-phi 4566  df-op 4567  df-proj1 4568  df-proj2 4569  df-opab 4624  df-br 4641  df-swap 4725  df-ima 4728  df-xp 4785  df-cnv 4786  df-rn 4787  df-dm 4788
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator