Step | Hyp | Ref
| Expression |
1 | | f1oiso2.1 |
. . 3
⊢ S = {〈x, y〉 ∣ ((x ∈ B ∧ y ∈ B) ∧ (◡H
‘x)R(◡H ‘y))} |
2 | | f1ocnvdm 5482 |
. . . . . . . . 9
⊢ ((H:A–1-1-onto→B ∧ x ∈ B) →
(◡H
‘x) ∈ A) |
3 | 2 | adantrr 697 |
. . . . . . . 8
⊢ ((H:A–1-1-onto→B ∧ (x ∈ B ∧ y ∈ B)) →
(◡H
‘x) ∈ A) |
4 | 3 | 3adant3 975 |
. . . . . . 7
⊢ ((H:A–1-1-onto→B ∧ (x ∈ B ∧ y ∈ B) ∧ (◡H ‘x)R(◡H
‘y)) → (◡H
‘x) ∈ A) |
5 | | f1ocnvdm 5482 |
. . . . . . . . . 10
⊢ ((H:A–1-1-onto→B ∧ y ∈ B) →
(◡H
‘y) ∈ A) |
6 | 5 | adantrl 696 |
. . . . . . . . 9
⊢ ((H:A–1-1-onto→B ∧ (x ∈ B ∧ y ∈ B)) →
(◡H
‘y) ∈ A) |
7 | 6 | 3adant3 975 |
. . . . . . . 8
⊢ ((H:A–1-1-onto→B ∧ (x ∈ B ∧ y ∈ B) ∧ (◡H ‘x)R(◡H
‘y)) → (◡H
‘y) ∈ A) |
8 | | f1ocnvfv2 5478 |
. . . . . . . . . . 11
⊢ ((H:A–1-1-onto→B ∧ x ∈ B) →
(H ‘(◡H
‘x)) = x) |
9 | 8 | eqcomd 2358 |
. . . . . . . . . 10
⊢ ((H:A–1-1-onto→B ∧ x ∈ B) →
x = (H
‘(◡H ‘x))) |
10 | | f1ocnvfv2 5478 |
. . . . . . . . . . 11
⊢ ((H:A–1-1-onto→B ∧ y ∈ B) →
(H ‘(◡H
‘y)) = y) |
11 | 10 | eqcomd 2358 |
. . . . . . . . . 10
⊢ ((H:A–1-1-onto→B ∧ y ∈ B) →
y = (H
‘(◡H ‘y))) |
12 | 9, 11 | anim12dan 810 |
. . . . . . . . 9
⊢ ((H:A–1-1-onto→B ∧ (x ∈ B ∧ y ∈ B)) →
(x = (H
‘(◡H ‘x))
∧ y =
(H ‘(◡H
‘y)))) |
13 | 12 | 3adant3 975 |
. . . . . . . 8
⊢ ((H:A–1-1-onto→B ∧ (x ∈ B ∧ y ∈ B) ∧ (◡H ‘x)R(◡H
‘y)) → (x = (H
‘(◡H ‘x))
∧ y =
(H ‘(◡H
‘y)))) |
14 | | simp3 957 |
. . . . . . . 8
⊢ ((H:A–1-1-onto→B ∧ (x ∈ B ∧ y ∈ B) ∧ (◡H ‘x)R(◡H
‘y)) → (◡H
‘x)R(◡H ‘y)) |
15 | | fveq2 5329 |
. . . . . . . . . . . 12
⊢ (w = (◡H
‘y) → (H ‘w) =
(H ‘(◡H
‘y))) |
16 | 15 | eqeq2d 2364 |
. . . . . . . . . . 11
⊢ (w = (◡H
‘y) → (y = (H
‘w) ↔ y = (H
‘(◡H ‘y)))) |
17 | 16 | anbi2d 684 |
. . . . . . . . . 10
⊢ (w = (◡H
‘y) → ((x = (H
‘(◡H ‘x))
∧ y =
(H ‘w)) ↔ (x =
(H ‘(◡H
‘x)) ∧ y = (H ‘(◡H
‘y))))) |
18 | | breq2 4644 |
. . . . . . . . . 10
⊢ (w = (◡H
‘y) → ((◡H
‘x)Rw ↔ (◡H
‘x)R(◡H ‘y))) |
19 | 17, 18 | anbi12d 691 |
. . . . . . . . 9
⊢ (w = (◡H
‘y) → (((x = (H
‘(◡H ‘x))
∧ y =
(H ‘w)) ∧ (◡H
‘x)Rw) ↔
((x = (H ‘(◡H
‘x)) ∧ y = (H ‘(◡H
‘y))) ∧ (◡H ‘x)R(◡H
‘y)))) |
20 | 19 | rspcev 2956 |
. . . . . . . 8
⊢ (((◡H
‘y) ∈ A ∧ ((x =
(H ‘(◡H
‘x)) ∧ y = (H ‘(◡H
‘y))) ∧ (◡H ‘x)R(◡H
‘y))) → ∃w ∈ A ((x = (H
‘(◡H ‘x))
∧ y =
(H ‘w)) ∧ (◡H
‘x)Rw)) |
21 | 7, 13, 14, 20 | syl12anc 1180 |
. . . . . . 7
⊢ ((H:A–1-1-onto→B ∧ (x ∈ B ∧ y ∈ B) ∧ (◡H ‘x)R(◡H
‘y)) → ∃w ∈ A ((x = (H
‘(◡H ‘x))
∧ y =
(H ‘w)) ∧ (◡H
‘x)Rw)) |
22 | | fveq2 5329 |
. . . . . . . . . . . 12
⊢ (z = (◡H
‘x) → (H ‘z) =
(H ‘(◡H
‘x))) |
23 | 22 | eqeq2d 2364 |
. . . . . . . . . . 11
⊢ (z = (◡H
‘x) → (x = (H
‘z) ↔ x = (H
‘(◡H ‘x)))) |
24 | 23 | anbi1d 685 |
. . . . . . . . . 10
⊢ (z = (◡H
‘x) → ((x = (H
‘z) ∧ y = (H ‘w))
↔ (x = (H ‘(◡H
‘x)) ∧ y = (H ‘w)))) |
25 | | breq1 4643 |
. . . . . . . . . 10
⊢ (z = (◡H
‘x) → (zRw ↔ (◡H
‘x)Rw)) |
26 | 24, 25 | anbi12d 691 |
. . . . . . . . 9
⊢ (z = (◡H
‘x) → (((x = (H
‘z) ∧ y = (H ‘w))
∧ zRw) ↔ ((x =
(H ‘(◡H
‘x)) ∧ y = (H ‘w))
∧ (◡H
‘x)Rw))) |
27 | 26 | rexbidv 2636 |
. . . . . . . 8
⊢ (z = (◡H
‘x) → (∃w ∈ A ((x = (H
‘z) ∧ y = (H ‘w))
∧ zRw) ↔ ∃w ∈ A ((x = (H
‘(◡H ‘x))
∧ y =
(H ‘w)) ∧ (◡H
‘x)Rw))) |
28 | 27 | rspcev 2956 |
. . . . . . 7
⊢ (((◡H
‘x) ∈ A ∧ ∃w ∈ A ((x =
(H ‘(◡H
‘x)) ∧ y = (H ‘w))
∧ (◡H
‘x)Rw)) →
∃z ∈ A ∃w ∈ A ((x = (H
‘z) ∧ y = (H ‘w))
∧ zRw)) |
29 | 4, 21, 28 | syl2anc 642 |
. . . . . 6
⊢ ((H:A–1-1-onto→B ∧ (x ∈ B ∧ y ∈ B) ∧ (◡H ‘x)R(◡H
‘y)) → ∃z ∈ A ∃w ∈ A ((x = (H
‘z) ∧ y = (H ‘w))
∧ zRw)) |
30 | 29 | 3expib 1154 |
. . . . 5
⊢ (H:A–1-1-onto→B →
(((x ∈
B ∧
y ∈
B) ∧
(◡H
‘x)R(◡H ‘y))
→ ∃z ∈ A ∃w ∈ A ((x =
(H ‘z) ∧ y = (H
‘w)) ∧ zRw))) |
31 | | simp3ll 1026 |
. . . . . . . . 9
⊢ ((H:A–1-1-onto→B ∧ (z ∈ A ∧ w ∈ A) ∧ ((x =
(H ‘z) ∧ y = (H
‘w)) ∧ zRw)) →
x = (H
‘z)) |
32 | | simp1 955 |
. . . . . . . . . 10
⊢ ((H:A–1-1-onto→B ∧ (z ∈ A ∧ w ∈ A) ∧ ((x =
(H ‘z) ∧ y = (H
‘w)) ∧ zRw)) →
H:A–1-1-onto→B) |
33 | | simp2l 981 |
. . . . . . . . . 10
⊢ ((H:A–1-1-onto→B ∧ (z ∈ A ∧ w ∈ A) ∧ ((x =
(H ‘z) ∧ y = (H
‘w)) ∧ zRw)) →
z ∈
A) |
34 | | f1of 5288 |
. . . . . . . . . . 11
⊢ (H:A–1-1-onto→B →
H:A–→B) |
35 | | ffvelrn 5416 |
. . . . . . . . . . 11
⊢ ((H:A–→B
∧ z ∈ A) →
(H ‘z) ∈ B) |
36 | 34, 35 | sylan 457 |
. . . . . . . . . 10
⊢ ((H:A–1-1-onto→B ∧ z ∈ A) →
(H ‘z) ∈ B) |
37 | 32, 33, 36 | syl2anc 642 |
. . . . . . . . 9
⊢ ((H:A–1-1-onto→B ∧ (z ∈ A ∧ w ∈ A) ∧ ((x =
(H ‘z) ∧ y = (H
‘w)) ∧ zRw)) →
(H ‘z) ∈ B) |
38 | 31, 37 | eqeltrd 2427 |
. . . . . . . 8
⊢ ((H:A–1-1-onto→B ∧ (z ∈ A ∧ w ∈ A) ∧ ((x =
(H ‘z) ∧ y = (H
‘w)) ∧ zRw)) →
x ∈
B) |
39 | | simp3lr 1027 |
. . . . . . . . 9
⊢ ((H:A–1-1-onto→B ∧ (z ∈ A ∧ w ∈ A) ∧ ((x =
(H ‘z) ∧ y = (H
‘w)) ∧ zRw)) →
y = (H
‘w)) |
40 | | simp2r 982 |
. . . . . . . . . 10
⊢ ((H:A–1-1-onto→B ∧ (z ∈ A ∧ w ∈ A) ∧ ((x =
(H ‘z) ∧ y = (H
‘w)) ∧ zRw)) →
w ∈
A) |
41 | | ffvelrn 5416 |
. . . . . . . . . . 11
⊢ ((H:A–→B
∧ w ∈ A) →
(H ‘w) ∈ B) |
42 | 34, 41 | sylan 457 |
. . . . . . . . . 10
⊢ ((H:A–1-1-onto→B ∧ w ∈ A) →
(H ‘w) ∈ B) |
43 | 32, 40, 42 | syl2anc 642 |
. . . . . . . . 9
⊢ ((H:A–1-1-onto→B ∧ (z ∈ A ∧ w ∈ A) ∧ ((x =
(H ‘z) ∧ y = (H
‘w)) ∧ zRw)) →
(H ‘w) ∈ B) |
44 | 39, 43 | eqeltrd 2427 |
. . . . . . . 8
⊢ ((H:A–1-1-onto→B ∧ (z ∈ A ∧ w ∈ A) ∧ ((x =
(H ‘z) ∧ y = (H
‘w)) ∧ zRw)) →
y ∈
B) |
45 | | simp3r 984 |
. . . . . . . . 9
⊢ ((H:A–1-1-onto→B ∧ (z ∈ A ∧ w ∈ A) ∧ ((x =
(H ‘z) ∧ y = (H
‘w)) ∧ zRw)) →
zRw) |
46 | 31 | eqcomd 2358 |
. . . . . . . . . 10
⊢ ((H:A–1-1-onto→B ∧ (z ∈ A ∧ w ∈ A) ∧ ((x =
(H ‘z) ∧ y = (H
‘w)) ∧ zRw)) →
(H ‘z) = x) |
47 | | f1ocnvfv 5479 |
. . . . . . . . . . 11
⊢ ((H:A–1-1-onto→B ∧ z ∈ A) →
((H ‘z) = x →
(◡H
‘x) = z)) |
48 | 32, 33, 47 | syl2anc 642 |
. . . . . . . . . 10
⊢ ((H:A–1-1-onto→B ∧ (z ∈ A ∧ w ∈ A) ∧ ((x =
(H ‘z) ∧ y = (H
‘w)) ∧ zRw)) →
((H ‘z) = x →
(◡H
‘x) = z)) |
49 | 46, 48 | mpd 14 |
. . . . . . . . 9
⊢ ((H:A–1-1-onto→B ∧ (z ∈ A ∧ w ∈ A) ∧ ((x =
(H ‘z) ∧ y = (H
‘w)) ∧ zRw)) →
(◡H
‘x) = z) |
50 | 39 | eqcomd 2358 |
. . . . . . . . . 10
⊢ ((H:A–1-1-onto→B ∧ (z ∈ A ∧ w ∈ A) ∧ ((x =
(H ‘z) ∧ y = (H
‘w)) ∧ zRw)) →
(H ‘w) = y) |
51 | | f1ocnvfv 5479 |
. . . . . . . . . . 11
⊢ ((H:A–1-1-onto→B ∧ w ∈ A) →
((H ‘w) = y →
(◡H
‘y) = w)) |
52 | 32, 40, 51 | syl2anc 642 |
. . . . . . . . . 10
⊢ ((H:A–1-1-onto→B ∧ (z ∈ A ∧ w ∈ A) ∧ ((x =
(H ‘z) ∧ y = (H
‘w)) ∧ zRw)) →
((H ‘w) = y →
(◡H
‘y) = w)) |
53 | 50, 52 | mpd 14 |
. . . . . . . . 9
⊢ ((H:A–1-1-onto→B ∧ (z ∈ A ∧ w ∈ A) ∧ ((x =
(H ‘z) ∧ y = (H
‘w)) ∧ zRw)) →
(◡H
‘y) = w) |
54 | 45, 49, 53 | 3brtr4d 4670 |
. . . . . . . 8
⊢ ((H:A–1-1-onto→B ∧ (z ∈ A ∧ w ∈ A) ∧ ((x =
(H ‘z) ∧ y = (H
‘w)) ∧ zRw)) →
(◡H
‘x)R(◡H ‘y)) |
55 | 38, 44, 54 | jca31 520 |
. . . . . . 7
⊢ ((H:A–1-1-onto→B ∧ (z ∈ A ∧ w ∈ A) ∧ ((x =
(H ‘z) ∧ y = (H
‘w)) ∧ zRw)) →
((x ∈
B ∧
y ∈
B) ∧
(◡H
‘x)R(◡H ‘y))) |
56 | 55 | 3exp 1150 |
. . . . . 6
⊢ (H:A–1-1-onto→B →
((z ∈
A ∧
w ∈
A) → (((x = (H
‘z) ∧ y = (H ‘w))
∧ zRw) → ((x
∈ B ∧ y ∈ B) ∧ (◡H ‘x)R(◡H
‘y))))) |
57 | 56 | rexlimdvv 2745 |
. . . . 5
⊢ (H:A–1-1-onto→B →
(∃z
∈ A ∃w ∈ A ((x = (H
‘z) ∧ y = (H ‘w))
∧ zRw) → ((x
∈ B ∧ y ∈ B) ∧ (◡H ‘x)R(◡H
‘y)))) |
58 | 30, 57 | impbid 183 |
. . . 4
⊢ (H:A–1-1-onto→B →
(((x ∈
B ∧
y ∈
B) ∧
(◡H
‘x)R(◡H ‘y))
↔ ∃z ∈ A ∃w ∈ A ((x =
(H ‘z) ∧ y = (H
‘w)) ∧ zRw))) |
59 | 58 | opabbidv 4626 |
. . 3
⊢ (H:A–1-1-onto→B →
{〈x,
y〉 ∣ ((x ∈ B ∧ y ∈ B) ∧ (◡H ‘x)R(◡H
‘y))} = {〈x, y〉 ∣ ∃z ∈ A ∃w ∈ A ((x =
(H ‘z) ∧ y = (H
‘w)) ∧ zRw)}) |
60 | 1, 59 | syl5eq 2397 |
. 2
⊢ (H:A–1-1-onto→B →
S = {〈x, y〉 ∣ ∃z ∈ A ∃w ∈ A ((x =
(H ‘z) ∧ y = (H
‘w)) ∧ zRw)}) |
61 | | f1oiso 5500 |
. 2
⊢ ((H:A–1-1-onto→B ∧ S = {〈x, y〉 ∣ ∃z ∈ A ∃w ∈ A ((x =
(H ‘z) ∧ y = (H
‘w)) ∧ zRw)}) →
H Isom R, S (A, B)) |
62 | 60, 61 | mpdan 649 |
1
⊢ (H:A–1-1-onto→B →
H Isom R, S (A, B)) |