NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  anim12ii GIF version

Theorem anim12ii 553
Description: Conjoin antecedents and consequents in a deduction. (Contributed by NM, 11-Nov-2007.) (Proof shortened by Wolf Lammen, 19-Jul-2013.)
Hypotheses
Ref Expression
anim12ii.1 (φ → (ψχ))
anim12ii.2 (θ → (ψτ))
Assertion
Ref Expression
anim12ii ((φ θ) → (ψ → (χ τ)))

Proof of Theorem anim12ii
StepHypRef Expression
1 anim12ii.1 . . 3 (φ → (ψχ))
21adantr 451 . 2 ((φ θ) → (ψχ))
3 anim12ii.2 . . 3 (θ → (ψτ))
43adantl 452 . 2 ((φ θ) → (ψτ))
52, 4jcad 519 1 ((φ θ) → (ψ → (χ τ)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360
This theorem is referenced by:  euim  2254  elex22  2871  sfinltfin  4536  funcnvuni  5162
  Copyright terms: Public domain W3C validator