New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > jcad | GIF version |
Description: Deduction conjoining the consequents of two implications. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 23-Jul-2013.) |
Ref | Expression |
---|---|
jcad.1 | ⊢ (φ → (ψ → χ)) |
jcad.2 | ⊢ (φ → (ψ → θ)) |
Ref | Expression |
---|---|
jcad | ⊢ (φ → (ψ → (χ ∧ θ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | jcad.1 | . 2 ⊢ (φ → (ψ → χ)) | |
2 | jcad.2 | . 2 ⊢ (φ → (ψ → θ)) | |
3 | pm3.2 434 | . 2 ⊢ (χ → (θ → (χ ∧ θ))) | |
4 | 1, 2, 3 | syl6c 60 | 1 ⊢ (φ → (ψ → (χ ∧ θ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 |
This theorem is referenced by: jctild 527 jctird 528 ancld 536 ancrd 537 anim12ii 553 oplem1 930 rr19.28v 2982 tfinltfinlem1 4501 iss 5001 funssres 5145 elpreima 5408 mapsn 6027 enadjlem1 6060 leltctr 6213 nchoicelem8 6297 |
Copyright terms: Public domain | W3C validator |