Step | Hyp | Ref
| Expression |
1 | | cnveq 4887 |
. . . . . . . 8
⊢ (x = v →
◡x
= ◡v) |
2 | 1 | eqeq2d 2364 |
. . . . . . 7
⊢ (x = v →
(z = ◡x ↔
z = ◡v)) |
3 | 2 | cbvrexv 2837 |
. . . . . 6
⊢ (∃x ∈ A z = ◡x ↔
∃v ∈ A z = ◡v) |
4 | | cnveq 4887 |
. . . . . . . . . . 11
⊢ (f = v →
◡f
= ◡v) |
5 | 4 | funeqd 5130 |
. . . . . . . . . 10
⊢ (f = v →
(Fun ◡f ↔ Fun ◡v)) |
6 | | sseq1 3293 |
. . . . . . . . . . . 12
⊢ (f = v →
(f ⊆
g ↔ v ⊆ g)) |
7 | | sseq2 3294 |
. . . . . . . . . . . 12
⊢ (f = v →
(g ⊆
f ↔ g ⊆ v)) |
8 | 6, 7 | orbi12d 690 |
. . . . . . . . . . 11
⊢ (f = v →
((f ⊆
g ∨
g ⊆
f) ↔ (v ⊆ g ∨ g ⊆ v))) |
9 | 8 | ralbidv 2635 |
. . . . . . . . . 10
⊢ (f = v →
(∀g
∈ A
(f ⊆
g ∨
g ⊆
f) ↔ ∀g ∈ A (v ⊆ g ∨ g ⊆ v))) |
10 | 5, 9 | anbi12d 691 |
. . . . . . . . 9
⊢ (f = v →
((Fun ◡f ∧ ∀g ∈ A (f ⊆ g ∨ g ⊆ f)) ↔ (Fun ◡v ∧ ∀g ∈ A (v ⊆ g ∨ g ⊆ v)))) |
11 | 10 | rspcv 2952 |
. . . . . . . 8
⊢ (v ∈ A → (∀f ∈ A (Fun ◡f ∧ ∀g ∈ A (f ⊆ g ∨ g ⊆ f)) →
(Fun ◡v ∧ ∀g ∈ A (v ⊆ g ∨ g ⊆ v)))) |
12 | | funeq 5128 |
. . . . . . . . . 10
⊢ (z = ◡v →
(Fun z ↔ Fun ◡v)) |
13 | 12 | biimprcd 216 |
. . . . . . . . 9
⊢ (Fun ◡v →
(z = ◡v →
Fun z)) |
14 | | sseq2 3294 |
. . . . . . . . . . . . . . 15
⊢ (g = x →
(v ⊆
g ↔ v ⊆ x)) |
15 | | sseq1 3293 |
. . . . . . . . . . . . . . 15
⊢ (g = x →
(g ⊆
v ↔ x ⊆ v)) |
16 | 14, 15 | orbi12d 690 |
. . . . . . . . . . . . . 14
⊢ (g = x →
((v ⊆
g ∨
g ⊆
v) ↔ (v ⊆ x ∨ x ⊆ v))) |
17 | 16 | rspcv 2952 |
. . . . . . . . . . . . 13
⊢ (x ∈ A → (∀g ∈ A (v ⊆ g ∨ g ⊆ v) → (v
⊆ x
∨ x ⊆ v))) |
18 | | cnvss 4886 |
. . . . . . . . . . . . . . . 16
⊢ (v ⊆ x → ◡v ⊆ ◡x) |
19 | | cnvss 4886 |
. . . . . . . . . . . . . . . 16
⊢ (x ⊆ v → ◡x ⊆ ◡v) |
20 | 18, 19 | orim12i 502 |
. . . . . . . . . . . . . . 15
⊢ ((v ⊆ x ∨ x ⊆ v) → (◡v ⊆ ◡x ∨ ◡x ⊆ ◡v)) |
21 | | sseq12 3295 |
. . . . . . . . . . . . . . . . 17
⊢ ((z = ◡v ∧ w = ◡x)
→ (z ⊆ w ↔
◡v
⊆ ◡x)) |
22 | 21 | ancoms 439 |
. . . . . . . . . . . . . . . 16
⊢ ((w = ◡x ∧ z = ◡v)
→ (z ⊆ w ↔
◡v
⊆ ◡x)) |
23 | | sseq12 3295 |
. . . . . . . . . . . . . . . 16
⊢ ((w = ◡x ∧ z = ◡v)
→ (w ⊆ z ↔
◡x
⊆ ◡v)) |
24 | 22, 23 | orbi12d 690 |
. . . . . . . . . . . . . . 15
⊢ ((w = ◡x ∧ z = ◡v)
→ ((z ⊆ w ∨ w ⊆ z) ↔
(◡v
⊆ ◡x ∨ ◡x ⊆ ◡v))) |
25 | 20, 24 | syl5ibrcom 213 |
. . . . . . . . . . . . . 14
⊢ ((v ⊆ x ∨ x ⊆ v) → ((w =
◡x
∧ z =
◡v)
→ (z ⊆ w ∨ w ⊆ z))) |
26 | 25 | exp3a 425 |
. . . . . . . . . . . . 13
⊢ ((v ⊆ x ∨ x ⊆ v) → (w =
◡x
→ (z = ◡v →
(z ⊆
w ∨
w ⊆
z)))) |
27 | 17, 26 | syl6com 31 |
. . . . . . . . . . . 12
⊢ (∀g ∈ A (v ⊆ g ∨ g ⊆ v) → (x
∈ A
→ (w = ◡x →
(z = ◡v →
(z ⊆
w ∨
w ⊆
z))))) |
28 | 27 | rexlimdv 2738 |
. . . . . . . . . . 11
⊢ (∀g ∈ A (v ⊆ g ∨ g ⊆ v) → (∃x ∈ A w = ◡x →
(z = ◡v →
(z ⊆
w ∨
w ⊆
z)))) |
29 | 28 | com23 72 |
. . . . . . . . . 10
⊢ (∀g ∈ A (v ⊆ g ∨ g ⊆ v) → (z =
◡v
→ (∃x ∈ A w = ◡x →
(z ⊆
w ∨
w ⊆
z)))) |
30 | 29 | alrimdv 1633 |
. . . . . . . . 9
⊢ (∀g ∈ A (v ⊆ g ∨ g ⊆ v) → (z =
◡v
→ ∀w(∃x ∈ A w = ◡x →
(z ⊆
w ∨
w ⊆
z)))) |
31 | 13, 30 | anim12ii 553 |
. . . . . . . 8
⊢ ((Fun ◡v ∧ ∀g ∈ A (v ⊆ g ∨ g ⊆ v)) →
(z = ◡v →
(Fun z ∧
∀w(∃x ∈ A w = ◡x →
(z ⊆
w ∨
w ⊆
z))))) |
32 | 11, 31 | syl6com 31 |
. . . . . . 7
⊢ (∀f ∈ A (Fun ◡f ∧ ∀g ∈ A (f ⊆ g ∨ g ⊆ f)) →
(v ∈
A → (z = ◡v →
(Fun z ∧
∀w(∃x ∈ A w = ◡x →
(z ⊆
w ∨
w ⊆
z)))))) |
33 | 32 | rexlimdv 2738 |
. . . . . 6
⊢ (∀f ∈ A (Fun ◡f ∧ ∀g ∈ A (f ⊆ g ∨ g ⊆ f)) →
(∃v
∈ A
z = ◡v →
(Fun z ∧
∀w(∃x ∈ A w = ◡x →
(z ⊆
w ∨
w ⊆
z))))) |
34 | 3, 33 | syl5bi 208 |
. . . . 5
⊢ (∀f ∈ A (Fun ◡f ∧ ∀g ∈ A (f ⊆ g ∨ g ⊆ f)) →
(∃x
∈ A
z = ◡x →
(Fun z ∧
∀w(∃x ∈ A w = ◡x →
(z ⊆
w ∨
w ⊆
z))))) |
35 | 34 | alrimiv 1631 |
. . . 4
⊢ (∀f ∈ A (Fun ◡f ∧ ∀g ∈ A (f ⊆ g ∨ g ⊆ f)) →
∀z(∃x ∈ A z = ◡x →
(Fun z ∧
∀w(∃x ∈ A w = ◡x →
(z ⊆
w ∨
w ⊆
z))))) |
36 | | df-ral 2620 |
. . . . 5
⊢ (∀z ∈ {y ∣ ∃x ∈ A y = ◡x} (Fun
z ∧ ∀w ∈ {y ∣ ∃x ∈ A y = ◡x}
(z ⊆
w ∨
w ⊆
z)) ↔ ∀z(z ∈ {y ∣ ∃x ∈ A y = ◡x}
→ (Fun z ∧ ∀w ∈ {y ∣ ∃x ∈ A y = ◡x}
(z ⊆
w ∨
w ⊆
z)))) |
37 | | vex 2863 |
. . . . . . . 8
⊢ z ∈
V |
38 | | eqeq1 2359 |
. . . . . . . . 9
⊢ (y = z →
(y = ◡x ↔
z = ◡x)) |
39 | 38 | rexbidv 2636 |
. . . . . . . 8
⊢ (y = z →
(∃x
∈ A
y = ◡x ↔
∃x ∈ A z = ◡x)) |
40 | 37, 39 | elab 2986 |
. . . . . . 7
⊢ (z ∈ {y ∣ ∃x ∈ A y = ◡x}
↔ ∃x ∈ A z = ◡x) |
41 | | eqeq1 2359 |
. . . . . . . . . 10
⊢ (y = w →
(y = ◡x ↔
w = ◡x)) |
42 | 41 | rexbidv 2636 |
. . . . . . . . 9
⊢ (y = w →
(∃x
∈ A
y = ◡x ↔
∃x ∈ A w = ◡x)) |
43 | 42 | ralab 2998 |
. . . . . . . 8
⊢ (∀w ∈ {y ∣ ∃x ∈ A y = ◡x}
(z ⊆
w ∨
w ⊆
z) ↔ ∀w(∃x ∈ A w = ◡x →
(z ⊆
w ∨
w ⊆
z))) |
44 | 43 | anbi2i 675 |
. . . . . . 7
⊢ ((Fun z ∧ ∀w ∈ {y ∣ ∃x ∈ A y = ◡x}
(z ⊆
w ∨
w ⊆
z)) ↔ (Fun z ∧ ∀w(∃x ∈ A w = ◡x →
(z ⊆
w ∨
w ⊆
z)))) |
45 | 40, 44 | imbi12i 316 |
. . . . . 6
⊢ ((z ∈ {y ∣ ∃x ∈ A y = ◡x}
→ (Fun z ∧ ∀w ∈ {y ∣ ∃x ∈ A y = ◡x}
(z ⊆
w ∨
w ⊆
z))) ↔ (∃x ∈ A z = ◡x →
(Fun z ∧
∀w(∃x ∈ A w = ◡x →
(z ⊆
w ∨
w ⊆
z))))) |
46 | 45 | albii 1566 |
. . . . 5
⊢ (∀z(z ∈ {y ∣ ∃x ∈ A y = ◡x}
→ (Fun z ∧ ∀w ∈ {y ∣ ∃x ∈ A y = ◡x}
(z ⊆
w ∨
w ⊆
z))) ↔ ∀z(∃x ∈ A z = ◡x →
(Fun z ∧
∀w(∃x ∈ A w = ◡x →
(z ⊆
w ∨
w ⊆
z))))) |
47 | 36, 46 | bitr2i 241 |
. . . 4
⊢ (∀z(∃x ∈ A z = ◡x →
(Fun z ∧
∀w(∃x ∈ A w = ◡x →
(z ⊆
w ∨
w ⊆
z)))) ↔ ∀z ∈ {y ∣ ∃x ∈ A y = ◡x} (Fun
z ∧ ∀w ∈ {y ∣ ∃x ∈ A y = ◡x}
(z ⊆
w ∨
w ⊆
z))) |
48 | 35, 47 | sylib 188 |
. . 3
⊢ (∀f ∈ A (Fun ◡f ∧ ∀g ∈ A (f ⊆ g ∨ g ⊆ f)) →
∀z
∈ {y
∣ ∃x ∈ A y = ◡x} (Fun
z ∧ ∀w ∈ {y ∣ ∃x ∈ A y = ◡x}
(z ⊆
w ∨
w ⊆
z))) |
49 | | fununi 5161 |
. . 3
⊢ (∀z ∈ {y ∣ ∃x ∈ A y = ◡x} (Fun
z ∧ ∀w ∈ {y ∣ ∃x ∈ A y = ◡x}
(z ⊆
w ∨
w ⊆
z)) → Fun ∪{y ∣ ∃x ∈ A y = ◡x}) |
50 | 48, 49 | syl 15 |
. 2
⊢ (∀f ∈ A (Fun ◡f ∧ ∀g ∈ A (f ⊆ g ∨ g ⊆ f)) →
Fun ∪{y ∣ ∃x ∈ A y = ◡x}) |
51 | | cnvuni 4896 |
. . . 4
⊢ ◡∪A = ∪x ∈ A ◡x |
52 | | vex 2863 |
. . . . . 6
⊢ x ∈
V |
53 | 52 | cnvex 5103 |
. . . . 5
⊢ ◡x ∈ V |
54 | 53 | dfiun2 4002 |
. . . 4
⊢ ∪x ∈ A ◡x =
∪{y ∣ ∃x ∈ A y = ◡x} |
55 | 51, 54 | eqtri 2373 |
. . 3
⊢ ◡∪A = ∪{y ∣ ∃x ∈ A y = ◡x} |
56 | 55 | funeqi 5129 |
. 2
⊢ (Fun ◡∪A ↔ Fun ∪{y ∣ ∃x ∈ A y = ◡x}) |
57 | 50, 56 | sylibr 203 |
1
⊢ (∀f ∈ A (Fun ◡f ∧ ∀g ∈ A (f ⊆ g ∨ g ⊆ f)) →
Fun ◡∪A) |