| Description: Axiom of Distinct
Variables.  The only axiom of predicate calculus
       requiring that variables be distinct (if we consider ax-17 1616 to be a
       metatheorem and not an axiom).  Axiom scheme C16' in [Megill] p. 448 (p.
       16 of the preprint).  It apparently does not otherwise appear in the
       literature but is easily proved from textbook predicate calculus by
       cases.  It is a somewhat bizarre axiom since the antecedent is always
       false in set theory (see dtru in set.mm), but nonetheless it is
       technically necessary as you can see from its uses.
 
       This axiom is redundant if we include ax-17 1616; see Theorem ax16 2045.
       Alternately, ax-17 1616 becomes logically redundant in the presence
of this
       axiom, but without ax-17 1616 we lose the more powerful metalogic that
       results from being able to express the concept of a setvar variable not
       occurring in a wff (as opposed to just two setvar variables being
       distinct).  We retain ax-16 2144 here to provide logical completeness for
       systems with the simpler metalogic that results from omitting ax-17 1616,
       which might be easier to study for some theoretical purposes.
 
       This axiom is obsolete and should no longer be used.  It is proved above
       as Theorem ax16 2045.  (Contributed by NM, 5-Aug-1993.)
       (New usage is discouraged.)  |