| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > a16g-o | GIF version | ||
| Description: A generalization of Axiom ax-16 2144. Version of a16g 1945 using ax-10o 2139. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| a16g-o | ⊢ (∀x x = y → (φ → ∀zφ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | aev-o 2182 | . 2 ⊢ (∀x x = y → ∀z z = x) | |
| 2 | ax-16 2144 | . 2 ⊢ (∀x x = y → (φ → ∀xφ)) | |
| 3 | biidd 228 | . . . 4 ⊢ (∀z z = x → (φ ↔ φ)) | |
| 4 | 3 | dral1-o 2154 | . . 3 ⊢ (∀z z = x → (∀zφ ↔ ∀xφ)) |
| 5 | 4 | biimprd 214 | . 2 ⊢ (∀z z = x → (∀xφ → ∀zφ)) |
| 6 | 1, 2, 5 | sylsyld 52 | 1 ⊢ (∀x x = y → (φ → ∀zφ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1540 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-4 2135 ax-5o 2136 ax-6o 2137 ax-10o 2139 ax-12o 2142 ax-16 2144 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 |
| This theorem is referenced by: ax11inda2 2199 |
| Copyright terms: Public domain | W3C validator |