NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  sikexg GIF version

Theorem sikexg 4297
Description: The Kuratowski singleton image of a set is a set. (Contributed by SF, 14-Jan-2015.)
Assertion
Ref Expression
sikexg (A VSIk A V)

Proof of Theorem sikexg
Dummy variables x y z w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sikeq 4242 . . 3 (x = ASIk x = SIk A)
21eleq1d 2419 . 2 (x = A → ( SIk x V ↔ SIk A V))
3 ax-si 4084 . . 3 yzw(⟪{z}, {w}⟫ y ↔ ⟪z, w x)
4 inss1 3476 . . . . . . . 8 ((1c ×k 1c) ∩ y) (1c ×k 1c)
5 sikss1c1c 4268 . . . . . . . 8 SIk x (1c ×k 1c)
64, 5sikexlem 4296 . . . . . . 7 (((1c ×k 1c) ∩ y) = SIk xzw(⟪{z}, {w}⟫ ((1c ×k 1c) ∩ y) ↔ ⟪{z}, {w}⟫ SIk x))
7 vex 2863 . . . . . . . . . . . 12 z V
87snel1c 4141 . . . . . . . . . . 11 {z} 1c
9 vex 2863 . . . . . . . . . . . 12 w V
109snel1c 4141 . . . . . . . . . . 11 {w} 1c
11 snex 4112 . . . . . . . . . . . 12 {z} V
12 snex 4112 . . . . . . . . . . . 12 {w} V
1311, 12opkelxpk 4249 . . . . . . . . . . 11 (⟪{z}, {w}⟫ (1c ×k 1c) ↔ ({z} 1c {w} 1c))
148, 10, 13mpbir2an 886 . . . . . . . . . 10 ⟪{z}, {w}⟫ (1c ×k 1c)
15 elin 3220 . . . . . . . . . 10 (⟪{z}, {w}⟫ ((1c ×k 1c) ∩ y) ↔ (⟪{z}, {w}⟫ (1c ×k 1c) ⟪{z}, {w}⟫ y))
1614, 15mpbiran 884 . . . . . . . . 9 (⟪{z}, {w}⟫ ((1c ×k 1c) ∩ y) ↔ ⟪{z}, {w}⟫ y)
177, 9opksnelsik 4266 . . . . . . . . 9 (⟪{z}, {w}⟫ SIk x ↔ ⟪z, w x)
1816, 17bibi12i 306 . . . . . . . 8 ((⟪{z}, {w}⟫ ((1c ×k 1c) ∩ y) ↔ ⟪{z}, {w}⟫ SIk x) ↔ (⟪{z}, {w}⟫ y ↔ ⟪z, w x))
19182albii 1567 . . . . . . 7 (zw(⟪{z}, {w}⟫ ((1c ×k 1c) ∩ y) ↔ ⟪{z}, {w}⟫ SIk x) ↔ zw(⟪{z}, {w}⟫ y ↔ ⟪z, w x))
206, 19bitri 240 . . . . . 6 (((1c ×k 1c) ∩ y) = SIk xzw(⟪{z}, {w}⟫ y ↔ ⟪z, w x))
2120biimpri 197 . . . . 5 (zw(⟪{z}, {w}⟫ y ↔ ⟪z, w x) → ((1c ×k 1c) ∩ y) = SIk x)
22 1cex 4143 . . . . . . 7 1c V
2322, 22xpkex 4290 . . . . . 6 (1c ×k 1c) V
24 vex 2863 . . . . . 6 y V
2523, 24inex 4106 . . . . 5 ((1c ×k 1c) ∩ y) V
2621, 25syl6eqelr 2442 . . . 4 (zw(⟪{z}, {w}⟫ y ↔ ⟪z, w x) → SIk x V)
2726exlimiv 1634 . . 3 (yzw(⟪{z}, {w}⟫ y ↔ ⟪z, w x) → SIk x V)
283, 27ax-mp 5 . 2 SIk x V
292, 28vtoclg 2915 1 (A VSIk A V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176  wal 1540  wex 1541   = wceq 1642   wcel 1710  Vcvv 2860  cin 3209  {csn 3738  copk 4058  1cc1c 4135   ×k cxpk 4175   SIk csik 4182
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-si 4084  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-ss 3260  df-nul 3552  df-sn 3742  df-pr 3743  df-opk 4059  df-1c 4137  df-xpk 4186  df-cnvk 4187  df-sik 4193
This theorem is referenced by:  sikex  4298  imakexg  4300  pw1exg  4303  imagekexg  4312  siexg  4753
  Copyright terms: Public domain W3C validator