Proof of Theorem axsiprim
| Step | Hyp | Ref
| Expression |
| 1 | | ax-si 4084 |
. 2
⊢ ∃y∀z∀w(⟪{z},
{w}⟫ ∈ y ↔
⟪z, w⟫ ∈
x) |
| 2 | | df-clel 2349 |
. . . . . 6
⊢ (⟪{z}, {w}⟫
∈ y
↔ ∃a(a =
⟪{z}, {w}⟫ ∧
a ∈
y)) |
| 3 | | axprimlem2 4090 |
. . . . . . . . 9
⊢ (a = ⟪{z},
{w}⟫ ↔ ∀b(b ∈ a ↔ (∀c(c ∈ b ↔ c =
{z}) ∨
∀e(e ∈ b ↔
(e = {z} ∨ e = {w}))))) |
| 4 | | axprimlem1 4089 |
. . . . . . . . . . . . . 14
⊢ (c = {z} ↔
∀d(d ∈ c ↔
d = z)) |
| 5 | 4 | bibi2i 304 |
. . . . . . . . . . . . 13
⊢ ((c ∈ b ↔ c =
{z}) ↔ (c ∈ b ↔ ∀d(d ∈ c ↔ d =
z))) |
| 6 | 5 | albii 1566 |
. . . . . . . . . . . 12
⊢ (∀c(c ∈ b ↔ c =
{z}) ↔ ∀c(c ∈ b ↔ ∀d(d ∈ c ↔ d =
z))) |
| 7 | | axprimlem1 4089 |
. . . . . . . . . . . . . . 15
⊢ (e = {z} ↔
∀f(f ∈ e ↔
f = z)) |
| 8 | | axprimlem1 4089 |
. . . . . . . . . . . . . . 15
⊢ (e = {w} ↔
∀g(g ∈ e ↔
g = w)) |
| 9 | 7, 8 | orbi12i 507 |
. . . . . . . . . . . . . 14
⊢ ((e = {z} ∨ e = {w}) ↔ (∀f(f ∈ e ↔ f =
z) ∨ ∀g(g ∈ e ↔ g =
w))) |
| 10 | 9 | bibi2i 304 |
. . . . . . . . . . . . 13
⊢ ((e ∈ b ↔ (e =
{z} ∨
e = {w})) ↔ (e
∈ b
↔ (∀f(f ∈ e ↔
f = z)
∨ ∀g(g ∈ e ↔ g =
w)))) |
| 11 | 10 | albii 1566 |
. . . . . . . . . . . 12
⊢ (∀e(e ∈ b ↔ (e =
{z} ∨
e = {w})) ↔ ∀e(e ∈ b ↔ (∀f(f ∈ e ↔ f =
z) ∨ ∀g(g ∈ e ↔ g =
w)))) |
| 12 | 6, 11 | orbi12i 507 |
. . . . . . . . . . 11
⊢ ((∀c(c ∈ b ↔ c =
{z}) ∨
∀e(e ∈ b ↔
(e = {z} ∨ e = {w})))
↔ (∀c(c ∈ b ↔
∀d(d ∈ c ↔
d = z))
∨ ∀e(e ∈ b ↔ (∀f(f ∈ e ↔ f =
z) ∨ ∀g(g ∈ e ↔ g =
w))))) |
| 13 | 12 | bibi2i 304 |
. . . . . . . . . 10
⊢ ((b ∈ a ↔ (∀c(c ∈ b ↔ c =
{z}) ∨
∀e(e ∈ b ↔
(e = {z} ∨ e = {w}))))
↔ (b ∈ a ↔
(∀c(c ∈ b ↔
∀d(d ∈ c ↔
d = z))
∨ ∀e(e ∈ b ↔ (∀f(f ∈ e ↔ f =
z) ∨ ∀g(g ∈ e ↔ g =
w)))))) |
| 14 | 13 | albii 1566 |
. . . . . . . . 9
⊢ (∀b(b ∈ a ↔ (∀c(c ∈ b ↔ c =
{z}) ∨
∀e(e ∈ b ↔
(e = {z} ∨ e = {w}))))
↔ ∀b(b ∈ a ↔
(∀c(c ∈ b ↔
∀d(d ∈ c ↔
d = z))
∨ ∀e(e ∈ b ↔ (∀f(f ∈ e ↔ f =
z) ∨ ∀g(g ∈ e ↔ g =
w)))))) |
| 15 | 3, 14 | bitri 240 |
. . . . . . . 8
⊢ (a = ⟪{z},
{w}⟫ ↔ ∀b(b ∈ a ↔ (∀c(c ∈ b ↔ ∀d(d ∈ c ↔ d =
z)) ∨
∀e(e ∈ b ↔
(∀f(f ∈ e ↔
f = z)
∨ ∀g(g ∈ e ↔ g =
w)))))) |
| 16 | 15 | anbi1i 676 |
. . . . . . 7
⊢ ((a = ⟪{z},
{w}⟫ ∧ a ∈ y) ↔
(∀b(b ∈ a ↔
(∀c(c ∈ b ↔
∀d(d ∈ c ↔
d = z))
∨ ∀e(e ∈ b ↔ (∀f(f ∈ e ↔ f =
z) ∨ ∀g(g ∈ e ↔ g =
w))))) ∧
a ∈
y)) |
| 17 | 16 | exbii 1582 |
. . . . . 6
⊢ (∃a(a = ⟪{z},
{w}⟫ ∧ a ∈ y) ↔
∃a(∀b(b ∈ a ↔ (∀c(c ∈ b ↔ ∀d(d ∈ c ↔ d =
z)) ∨
∀e(e ∈ b ↔
(∀f(f ∈ e ↔
f = z)
∨ ∀g(g ∈ e ↔ g =
w))))) ∧
a ∈
y)) |
| 18 | 2, 17 | bitri 240 |
. . . . 5
⊢ (⟪{z}, {w}⟫
∈ y
↔ ∃a(∀b(b ∈ a ↔
(∀c(c ∈ b ↔
∀d(d ∈ c ↔
d = z))
∨ ∀e(e ∈ b ↔ (∀f(f ∈ e ↔ f =
z) ∨ ∀g(g ∈ e ↔ g =
w))))) ∧
a ∈
y)) |
| 19 | | df-clel 2349 |
. . . . . 6
⊢ (⟪z, w⟫
∈ x
↔ ∃h(h =
⟪z, w⟫ ∧
h ∈
x)) |
| 20 | | axprimlem2 4090 |
. . . . . . . 8
⊢ (h = ⟪z,
w⟫ ↔ ∀i(i ∈ h ↔ (∀j(j ∈ i ↔ j =
z) ∨ ∀k(k ∈ i ↔ (k =
z ∨
k = w))))) |
| 21 | 20 | anbi1i 676 |
. . . . . . 7
⊢ ((h = ⟪z,
w⟫ ∧ h ∈ x) ↔
(∀i(i ∈ h ↔
(∀j(j ∈ i ↔
j = z)
∨ ∀k(k ∈ i ↔ (k =
z ∨
k = w)))) ∧ h ∈ x)) |
| 22 | 21 | exbii 1582 |
. . . . . 6
⊢ (∃h(h = ⟪z,
w⟫ ∧ h ∈ x) ↔
∃h(∀i(i ∈ h ↔ (∀j(j ∈ i ↔ j =
z) ∨ ∀k(k ∈ i ↔ (k =
z ∨
k = w)))) ∧ h ∈ x)) |
| 23 | 19, 22 | bitri 240 |
. . . . 5
⊢ (⟪z, w⟫
∈ x
↔ ∃h(∀i(i ∈ h ↔
(∀j(j ∈ i ↔
j = z)
∨ ∀k(k ∈ i ↔ (k =
z ∨
k = w)))) ∧ h ∈ x)) |
| 24 | 18, 23 | bibi12i 306 |
. . . 4
⊢ ((⟪{z}, {w}⟫
∈ y
↔ ⟪z, w⟫ ∈
x) ↔ (∃a(∀b(b ∈ a ↔ (∀c(c ∈ b ↔ ∀d(d ∈ c ↔ d =
z)) ∨
∀e(e ∈ b ↔
(∀f(f ∈ e ↔
f = z)
∨ ∀g(g ∈ e ↔ g =
w))))) ∧
a ∈
y) ↔ ∃h(∀i(i ∈ h ↔ (∀j(j ∈ i ↔ j =
z) ∨ ∀k(k ∈ i ↔ (k =
z ∨
k = w)))) ∧ h ∈ x))) |
| 25 | 24 | 2albii 1567 |
. . 3
⊢ (∀z∀w(⟪{z},
{w}⟫ ∈ y ↔
⟪z, w⟫ ∈
x) ↔ ∀z∀w(∃a(∀b(b ∈ a ↔ (∀c(c ∈ b ↔ ∀d(d ∈ c ↔ d =
z)) ∨
∀e(e ∈ b ↔
(∀f(f ∈ e ↔
f = z)
∨ ∀g(g ∈ e ↔ g =
w))))) ∧
a ∈
y) ↔ ∃h(∀i(i ∈ h ↔ (∀j(j ∈ i ↔ j =
z) ∨ ∀k(k ∈ i ↔ (k =
z ∨
k = w)))) ∧ h ∈ x))) |
| 26 | 25 | exbii 1582 |
. 2
⊢ (∃y∀z∀w(⟪{z},
{w}⟫ ∈ y ↔
⟪z, w⟫ ∈
x) ↔ ∃y∀z∀w(∃a(∀b(b ∈ a ↔ (∀c(c ∈ b ↔ ∀d(d ∈ c ↔ d =
z)) ∨
∀e(e ∈ b ↔
(∀f(f ∈ e ↔
f = z)
∨ ∀g(g ∈ e ↔ g =
w))))) ∧
a ∈
y) ↔ ∃h(∀i(i ∈ h ↔ (∀j(j ∈ i ↔ j =
z) ∨ ∀k(k ∈ i ↔ (k =
z ∨
k = w)))) ∧ h ∈ x))) |
| 27 | 1, 26 | mpbi 199 |
1
⊢ ∃y∀z∀w(∃a(∀b(b ∈ a ↔ (∀c(c ∈ b ↔ ∀d(d ∈ c ↔ d =
z)) ∨
∀e(e ∈ b ↔
(∀f(f ∈ e ↔
f = z)
∨ ∀g(g ∈ e ↔ g =
w))))) ∧
a ∈
y) ↔ ∃h(∀i(i ∈ h ↔ (∀j(j ∈ i ↔ j =
z) ∨ ∀k(k ∈ i ↔ (k =
z ∨
k = w)))) ∧ h ∈ x)) |