Proof of Theorem axssetprim
| Step | Hyp | Ref
 | Expression | 
| 1 |   | ax-sset 4083 | 
. 2
⊢ ∃x∀y∀z(⟪y,
z⟫ ∈ x ↔
∀e(e ∈ y →
e ∈
z)) | 
| 2 |   | df-clel 2349 | 
. . . . . 6
⊢ (⟪y, z⟫
∈ x
↔ ∃a(a =
⟪y, z⟫ ∧
a ∈
x)) | 
| 3 |   | axprimlem2 4090 | 
. . . . . . . 8
⊢ (a = ⟪y,
z⟫ ↔ ∀b(b ∈ a ↔ (∀c(c ∈ b ↔ c =
y)  ∨ ∀d(d ∈ b ↔ (d =
y  ∨
d = z))))) | 
| 4 | 3 | anbi1i 676 | 
. . . . . . 7
⊢ ((a = ⟪y,
z⟫ ∧ a ∈ x) ↔
(∀b(b ∈ a ↔
(∀c(c ∈ b ↔
c = y)
 ∨ ∀d(d ∈ b ↔ (d =
y  ∨
d = z)))) ∧ a ∈ x)) | 
| 5 | 4 | exbii 1582 | 
. . . . . 6
⊢ (∃a(a = ⟪y,
z⟫ ∧ a ∈ x) ↔
∃a(∀b(b ∈ a ↔ (∀c(c ∈ b ↔ c =
y)  ∨ ∀d(d ∈ b ↔ (d =
y  ∨
d = z)))) ∧ a ∈ x)) | 
| 6 | 2, 5 | bitri 240 | 
. . . . 5
⊢ (⟪y, z⟫
∈ x
↔ ∃a(∀b(b ∈ a ↔
(∀c(c ∈ b ↔
c = y)
 ∨ ∀d(d ∈ b ↔ (d =
y  ∨
d = z)))) ∧ a ∈ x)) | 
| 7 | 6 | bibi1i 305 | 
. . . 4
⊢ ((⟪y, z⟫
∈ x
↔ ∀e(e ∈ y →
e ∈
z)) ↔ (∃a(∀b(b ∈ a ↔ (∀c(c ∈ b ↔ c =
y)  ∨ ∀d(d ∈ b ↔ (d =
y  ∨
d = z)))) ∧ a ∈ x) ↔ ∀e(e ∈ y → e ∈ z))) | 
| 8 | 7 | 2albii 1567 | 
. . 3
⊢ (∀y∀z(⟪y,
z⟫ ∈ x ↔
∀e(e ∈ y →
e ∈
z)) ↔ ∀y∀z(∃a(∀b(b ∈ a ↔ (∀c(c ∈ b ↔ c =
y)  ∨ ∀d(d ∈ b ↔ (d =
y  ∨
d = z)))) ∧ a ∈ x) ↔ ∀e(e ∈ y → e ∈ z))) | 
| 9 | 8 | exbii 1582 | 
. 2
⊢ (∃x∀y∀z(⟪y,
z⟫ ∈ x ↔
∀e(e ∈ y →
e ∈
z)) ↔ ∃x∀y∀z(∃a(∀b(b ∈ a ↔ (∀c(c ∈ b ↔ c =
y)  ∨ ∀d(d ∈ b ↔ (d =
y  ∨
d = z)))) ∧ a ∈ x) ↔ ∀e(e ∈ y → e ∈ z))) | 
| 10 | 1, 9 | mpbi 199 | 
1
⊢ ∃x∀y∀z(∃a(∀b(b ∈ a ↔ (∀c(c ∈ b ↔ c =
y)  ∨ ∀d(d ∈ b ↔ (d =
y  ∨
d = z)))) ∧ a ∈ x) ↔ ∀e(e ∈ y → e ∈ z)) |