NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  ssetkex GIF version

Theorem ssetkex 4295
Description: The Kuratowski subset relationship is a set. (Contributed by SF, 13-Jan-2015.)
Assertion
Ref Expression
ssetkex Sk V

Proof of Theorem ssetkex
Dummy variables x y z w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ax-sset 4083 . 2 xyz(⟪y, z xw(w yw z))
2 inss1 3476 . . . . . . 7 ((V ×k V) ∩ x) (V ×k V)
3 ssetkssvvk 4279 . . . . . . 7 Sk (V ×k V)
4 eqrelk 4213 . . . . . . 7 ((((V ×k V) ∩ x) (V ×k V) Sk (V ×k V)) → (((V ×k V) ∩ x) = Skyz(⟪y, z ((V ×k V) ∩ x) ↔ ⟪y, z Sk )))
52, 3, 4mp2an 653 . . . . . 6 (((V ×k V) ∩ x) = Skyz(⟪y, z ((V ×k V) ∩ x) ↔ ⟪y, z Sk ))
6 vex 2863 . . . . . . . . . 10 y V
7 vex 2863 . . . . . . . . . 10 z V
86, 7opkelxpk 4249 . . . . . . . . . 10 (⟪y, z (V ×k V) ↔ (y V z V))
96, 7, 8mpbir2an 886 . . . . . . . . 9 y, z (V ×k V)
10 elin 3220 . . . . . . . . 9 (⟪y, z ((V ×k V) ∩ x) ↔ (⟪y, z (V ×k V) y, z x))
119, 10mpbiran 884 . . . . . . . 8 (⟪y, z ((V ×k V) ∩ x) ↔ ⟪y, z x)
12 opkelssetkg 4269 . . . . . . . . . 10 ((y V z V) → (⟪y, z Sky z))
136, 7, 12mp2an 653 . . . . . . . . 9 (⟪y, z Sky z)
14 dfss2 3263 . . . . . . . . 9 (y zw(w yw z))
1513, 14bitri 240 . . . . . . . 8 (⟪y, z Skw(w yw z))
1611, 15bibi12i 306 . . . . . . 7 ((⟪y, z ((V ×k V) ∩ x) ↔ ⟪y, z Sk ) ↔ (⟪y, z xw(w yw z)))
17162albii 1567 . . . . . 6 (yz(⟪y, z ((V ×k V) ∩ x) ↔ ⟪y, z Sk ) ↔ yz(⟪y, z xw(w yw z)))
185, 17bitri 240 . . . . 5 (((V ×k V) ∩ x) = Skyz(⟪y, z xw(w yw z)))
1918biimpri 197 . . . 4 (yz(⟪y, z xw(w yw z)) → ((V ×k V) ∩ x) = Sk )
20 vvex 4110 . . . . . 6 V V
21 xpkvexg 4286 . . . . . 6 (V V → (V ×k V) V)
2220, 21ax-mp 5 . . . . 5 (V ×k V) V
23 vex 2863 . . . . 5 x V
2422, 23inex 4106 . . . 4 ((V ×k V) ∩ x) V
2519, 24syl6eqelr 2442 . . 3 (yz(⟪y, z xw(w yw z)) → Sk V)
2625exlimiv 1634 . 2 (xyz(⟪y, z xw(w yw z)) → Sk V)
271, 26ax-mp 5 1 Sk V
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176  wal 1540  wex 1541   = wceq 1642   wcel 1710  Vcvv 2860  cin 3209   wss 3258  copk 4058   ×k cxpk 4175   Sk cssetk 4184
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-sset 4083  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-ss 3260  df-nul 3552  df-sn 3742  df-pr 3743  df-opk 4059  df-xpk 4186  df-ssetk 4194
This theorem is referenced by:  imagekexg  4312  idkex  4315  uniexg  4317  intexg  4320  setswithex  4323  pwexg  4329  addcexlem  4383  nncex  4397  nnsucelrlem1  4425  nndisjeq  4430  ltfinex  4465  ssfin  4471  ncfinraiselem2  4481  ncfinlowerlem1  4483  tfinrelkex  4488  evenfinex  4504  oddfinex  4505  evenodddisjlem1  4516  nnadjoinlem1  4520  nnpweqlem1  4523  srelkex  4526  tfinnnlem1  4534  spfinex  4538  opexg  4588  proj2exg  4593  setconslem5  4736  1stex  4740  swapex  4743  ssetex  4745
  Copyright terms: Public domain W3C validator