Step | Hyp | Ref
| Expression |
1 | | ax-sset 4083 |
. 2
⊢ ∃x∀y∀z(⟪y,
z⟫ ∈ x ↔
∀w(w ∈ y →
w ∈
z)) |
2 | | inss1 3476 |
. . . . . . 7
⊢ ((V
×k V) ∩ x)
⊆ (V ×k
V) |
3 | | ssetkssvvk 4279 |
. . . . . . 7
⊢ Sk ⊆ (V ×k
V) |
4 | | eqrelk 4213 |
. . . . . . 7
⊢ ((((V
×k V) ∩ x)
⊆ (V ×k V) ∧ Sk
⊆ (V ×k V)) →
(((V ×k V) ∩ x)
= Sk ↔ ∀y∀z(⟪y,
z⟫ ∈ ((V ×k V) ∩ x) ↔ ⟪y, z⟫
∈ Sk ))) |
5 | 2, 3, 4 | mp2an 653 |
. . . . . 6
⊢ (((V
×k V) ∩ x) =
Sk ↔ ∀y∀z(⟪y,
z⟫ ∈ ((V ×k V) ∩ x) ↔ ⟪y, z⟫
∈ Sk )) |
6 | | vex 2863 |
. . . . . . . . . 10
⊢ y ∈
V |
7 | | vex 2863 |
. . . . . . . . . 10
⊢ z ∈
V |
8 | 6, 7 | opkelxpk 4249 |
. . . . . . . . . 10
⊢ (⟪y, z⟫
∈ (V ×k V) ↔
(y ∈ V
∧ z ∈ V)) |
9 | 6, 7, 8 | mpbir2an 886 |
. . . . . . . . 9
⊢ ⟪y, z⟫
∈ (V ×k
V) |
10 | | elin 3220 |
. . . . . . . . 9
⊢ (⟪y, z⟫
∈ ((V ×k V) ∩
x) ↔ (⟪y, z⟫
∈ (V ×k V) ∧ ⟪y,
z⟫ ∈ x)) |
11 | 9, 10 | mpbiran 884 |
. . . . . . . 8
⊢ (⟪y, z⟫
∈ ((V ×k V) ∩
x) ↔ ⟪y, z⟫
∈ x) |
12 | | opkelssetkg 4269 |
. . . . . . . . . 10
⊢ ((y ∈ V ∧ z ∈ V) → (⟪y, z⟫
∈ Sk ↔ y ⊆ z)) |
13 | 6, 7, 12 | mp2an 653 |
. . . . . . . . 9
⊢ (⟪y, z⟫
∈ Sk ↔ y ⊆ z) |
14 | | dfss2 3263 |
. . . . . . . . 9
⊢ (y ⊆ z ↔ ∀w(w ∈ y → w ∈ z)) |
15 | 13, 14 | bitri 240 |
. . . . . . . 8
⊢ (⟪y, z⟫
∈ Sk ↔ ∀w(w ∈ y → w ∈ z)) |
16 | 11, 15 | bibi12i 306 |
. . . . . . 7
⊢ ((⟪y, z⟫
∈ ((V ×k V) ∩
x) ↔ ⟪y, z⟫
∈ Sk ) ↔ (⟪y, z⟫
∈ x
↔ ∀w(w ∈ y →
w ∈
z))) |
17 | 16 | 2albii 1567 |
. . . . . 6
⊢ (∀y∀z(⟪y,
z⟫ ∈ ((V ×k V) ∩ x) ↔ ⟪y, z⟫
∈ Sk ) ↔ ∀y∀z(⟪y,
z⟫ ∈ x ↔
∀w(w ∈ y →
w ∈
z))) |
18 | 5, 17 | bitri 240 |
. . . . 5
⊢ (((V
×k V) ∩ x) =
Sk ↔ ∀y∀z(⟪y,
z⟫ ∈ x ↔
∀w(w ∈ y →
w ∈
z))) |
19 | 18 | biimpri 197 |
. . . 4
⊢ (∀y∀z(⟪y,
z⟫ ∈ x ↔
∀w(w ∈ y →
w ∈
z)) → ((V ×k
V) ∩ x) = Sk ) |
20 | | vvex 4110 |
. . . . . 6
⊢ V ∈ V |
21 | | xpkvexg 4286 |
. . . . . 6
⊢ (V ∈ V → (V ×k V) ∈ V) |
22 | 20, 21 | ax-mp 5 |
. . . . 5
⊢ (V
×k V) ∈
V |
23 | | vex 2863 |
. . . . 5
⊢ x ∈
V |
24 | 22, 23 | inex 4106 |
. . . 4
⊢ ((V
×k V) ∩ x)
∈ V |
25 | 19, 24 | syl6eqelr 2442 |
. . 3
⊢ (∀y∀z(⟪y,
z⟫ ∈ x ↔
∀w(w ∈ y →
w ∈
z)) → Sk ∈
V) |
26 | 25 | exlimiv 1634 |
. 2
⊢ (∃x∀y∀z(⟪y,
z⟫ ∈ x ↔
∀w(w ∈ y →
w ∈
z)) → Sk ∈
V) |
27 | 1, 26 | ax-mp 5 |
1
⊢ Sk ∈
V |