Proof of Theorem axtyplowerprim
Step | Hyp | Ref
| Expression |
1 | | ax-typlower 4087 |
. 2
⊢ ∃y∀z(z ∈ y ↔ ∀w⟪w,
{z}⟫ ∈ x) |
2 | | df-clel 2349 |
. . . . . . 7
⊢ (⟪w, {z}⟫
∈ x
↔ ∃a(a =
⟪w, {z}⟫ ∧
a ∈
x)) |
3 | | axprimlem2 4090 |
. . . . . . . . . 10
⊢ (a = ⟪w,
{z}⟫ ↔ ∀b(b ∈ a ↔ (∀c(c ∈ b ↔ c =
w) ∨ ∀d(d ∈ b ↔ (d =
w ∨
d = {z}))))) |
4 | | axprimlem1 4089 |
. . . . . . . . . . . . . . . 16
⊢ (d = {z} ↔
∀e(e ∈ d ↔
e = z)) |
5 | 4 | orbi2i 505 |
. . . . . . . . . . . . . . 15
⊢ ((d = w ∨ d = {z}) ↔ (d =
w ∨ ∀e(e ∈ d ↔ e =
z))) |
6 | 5 | bibi2i 304 |
. . . . . . . . . . . . . 14
⊢ ((d ∈ b ↔ (d =
w ∨
d = {z})) ↔ (d
∈ b
↔ (d = w ∨ ∀e(e ∈ d ↔ e =
z)))) |
7 | 6 | albii 1566 |
. . . . . . . . . . . . 13
⊢ (∀d(d ∈ b ↔ (d =
w ∨
d = {z})) ↔ ∀d(d ∈ b ↔ (d =
w ∨ ∀e(e ∈ d ↔ e =
z)))) |
8 | 7 | orbi2i 505 |
. . . . . . . . . . . 12
⊢ ((∀c(c ∈ b ↔ c =
w) ∨ ∀d(d ∈ b ↔ (d =
w ∨
d = {z}))) ↔ (∀c(c ∈ b ↔ c =
w) ∨ ∀d(d ∈ b ↔ (d =
w ∨ ∀e(e ∈ d ↔ e =
z))))) |
9 | 8 | bibi2i 304 |
. . . . . . . . . . 11
⊢ ((b ∈ a ↔ (∀c(c ∈ b ↔ c =
w) ∨ ∀d(d ∈ b ↔ (d =
w ∨
d = {z})))) ↔ (b
∈ a
↔ (∀c(c ∈ b ↔
c = w)
∨ ∀d(d ∈ b ↔ (d =
w ∨ ∀e(e ∈ d ↔ e =
z)))))) |
10 | 9 | albii 1566 |
. . . . . . . . . 10
⊢ (∀b(b ∈ a ↔ (∀c(c ∈ b ↔ c =
w) ∨ ∀d(d ∈ b ↔ (d =
w ∨
d = {z})))) ↔ ∀b(b ∈ a ↔ (∀c(c ∈ b ↔ c =
w) ∨ ∀d(d ∈ b ↔ (d =
w ∨ ∀e(e ∈ d ↔ e =
z)))))) |
11 | 3, 10 | bitri 240 |
. . . . . . . . 9
⊢ (a = ⟪w,
{z}⟫ ↔ ∀b(b ∈ a ↔ (∀c(c ∈ b ↔ c =
w) ∨ ∀d(d ∈ b ↔ (d =
w ∨ ∀e(e ∈ d ↔ e =
z)))))) |
12 | 11 | anbi1i 676 |
. . . . . . . 8
⊢ ((a = ⟪w,
{z}⟫ ∧ a ∈ x) ↔
(∀b(b ∈ a ↔
(∀c(c ∈ b ↔
c = w)
∨ ∀d(d ∈ b ↔ (d =
w ∨ ∀e(e ∈ d ↔ e =
z))))) ∧
a ∈
x)) |
13 | 12 | exbii 1582 |
. . . . . . 7
⊢ (∃a(a = ⟪w,
{z}⟫ ∧ a ∈ x) ↔
∃a(∀b(b ∈ a ↔ (∀c(c ∈ b ↔ c =
w) ∨ ∀d(d ∈ b ↔ (d =
w ∨ ∀e(e ∈ d ↔ e =
z))))) ∧
a ∈
x)) |
14 | 2, 13 | bitri 240 |
. . . . . 6
⊢ (⟪w, {z}⟫
∈ x
↔ ∃a(∀b(b ∈ a ↔
(∀c(c ∈ b ↔
c = w)
∨ ∀d(d ∈ b ↔ (d =
w ∨ ∀e(e ∈ d ↔ e =
z))))) ∧
a ∈
x)) |
15 | 14 | albii 1566 |
. . . . 5
⊢ (∀w⟪w,
{z}⟫ ∈ x ↔
∀w∃a(∀b(b ∈ a ↔ (∀c(c ∈ b ↔ c =
w) ∨ ∀d(d ∈ b ↔ (d =
w ∨ ∀e(e ∈ d ↔ e =
z))))) ∧
a ∈
x)) |
16 | 15 | bibi2i 304 |
. . . 4
⊢ ((z ∈ y ↔ ∀w⟪w,
{z}⟫ ∈ x) ↔
(z ∈
y ↔ ∀w∃a(∀b(b ∈ a ↔ (∀c(c ∈ b ↔ c =
w) ∨ ∀d(d ∈ b ↔ (d =
w ∨ ∀e(e ∈ d ↔ e =
z))))) ∧
a ∈
x))) |
17 | 16 | albii 1566 |
. . 3
⊢ (∀z(z ∈ y ↔ ∀w⟪w,
{z}⟫ ∈ x) ↔
∀z(z ∈ y ↔
∀w∃a(∀b(b ∈ a ↔ (∀c(c ∈ b ↔ c =
w) ∨ ∀d(d ∈ b ↔ (d =
w ∨ ∀e(e ∈ d ↔ e =
z))))) ∧
a ∈
x))) |
18 | 17 | exbii 1582 |
. 2
⊢ (∃y∀z(z ∈ y ↔ ∀w⟪w,
{z}⟫ ∈ x) ↔
∃y∀z(z ∈ y ↔ ∀w∃a(∀b(b ∈ a ↔ (∀c(c ∈ b ↔ c =
w) ∨ ∀d(d ∈ b ↔ (d =
w ∨ ∀e(e ∈ d ↔ e =
z))))) ∧
a ∈
x))) |
19 | 1, 18 | mpbi 199 |
1
⊢ ∃y∀z(z ∈ y ↔ ∀w∃a(∀b(b ∈ a ↔ (∀c(c ∈ b ↔ c =
w) ∨ ∀d(d ∈ b ↔ (d =
w ∨ ∀e(e ∈ d ↔ e =
z))))) ∧
a ∈
x)) |