New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > p6exg | GIF version |
Description: The P6 operator applied to a set yields a set. (Contributed by SF, 13-Jan-2015.) |
Ref | Expression |
---|---|
p6exg | ⊢ (A ∈ V → P6 A ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | p6eq 4239 | . . 3 ⊢ (x = A → P6 x = P6 A) | |
2 | 1 | eleq1d 2419 | . 2 ⊢ (x = A → ( P6 x ∈ V ↔ P6 A ∈ V)) |
3 | ax-typlower 4087 | . . 3 ⊢ ∃y∀z(z ∈ y ↔ ∀w⟪w, {z}⟫ ∈ x) | |
4 | dfcleq 2347 | . . . . . . 7 ⊢ (y = P6 x ↔ ∀z(z ∈ y ↔ z ∈ P6 x)) | |
5 | vex 2863 | . . . . . . . . . 10 ⊢ z ∈ V | |
6 | elp6 4264 | . . . . . . . . . 10 ⊢ (z ∈ V → (z ∈ P6 x ↔ ∀w⟪w, {z}⟫ ∈ x)) | |
7 | 5, 6 | ax-mp 5 | . . . . . . . . 9 ⊢ (z ∈ P6 x ↔ ∀w⟪w, {z}⟫ ∈ x) |
8 | 7 | bibi2i 304 | . . . . . . . 8 ⊢ ((z ∈ y ↔ z ∈ P6 x) ↔ (z ∈ y ↔ ∀w⟪w, {z}⟫ ∈ x)) |
9 | 8 | albii 1566 | . . . . . . 7 ⊢ (∀z(z ∈ y ↔ z ∈ P6 x) ↔ ∀z(z ∈ y ↔ ∀w⟪w, {z}⟫ ∈ x)) |
10 | 4, 9 | bitri 240 | . . . . . 6 ⊢ (y = P6 x ↔ ∀z(z ∈ y ↔ ∀w⟪w, {z}⟫ ∈ x)) |
11 | 10 | biimpri 197 | . . . . 5 ⊢ (∀z(z ∈ y ↔ ∀w⟪w, {z}⟫ ∈ x) → y = P6 x) |
12 | vex 2863 | . . . . 5 ⊢ y ∈ V | |
13 | 11, 12 | syl6eqelr 2442 | . . . 4 ⊢ (∀z(z ∈ y ↔ ∀w⟪w, {z}⟫ ∈ x) → P6 x ∈ V) |
14 | 13 | exlimiv 1634 | . . 3 ⊢ (∃y∀z(z ∈ y ↔ ∀w⟪w, {z}⟫ ∈ x) → P6 x ∈ V) |
15 | 3, 14 | ax-mp 5 | . 2 ⊢ P6 x ∈ V |
16 | 2, 15 | vtoclg 2915 | 1 ⊢ (A ∈ V → P6 A ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∀wal 1540 ∃wex 1541 = wceq 1642 ∈ wcel 1710 Vcvv 2860 {csn 3738 ⟪copk 4058 P6 cp6 4179 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-ss 3260 df-nul 3552 df-sn 3742 df-pr 3743 df-opk 4059 df-xpk 4186 df-p6 4192 |
This theorem is referenced by: uni1exg 4293 imakexg 4300 |
Copyright terms: Public domain | W3C validator |