NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  ax3 GIF version

Theorem ax3 1433
Description: Standard propositional axiom derived from Lukasiewicz axioms. (Contributed by NM, 22-Dec-2002.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
ax3 ((¬ φ → ¬ ψ) → (ψφ))

Proof of Theorem ax3
StepHypRef Expression
1 luklem2 1424 . 2 ((¬ φ → ¬ ψ) → (((¬ φφ) → φ) → (ψφ)))
2 luklem4 1426 . 2 ((((¬ φφ) → φ) → (ψφ)) → (ψφ))
31, 2luklem1 1423 1 ((¬ φ → ¬ ψ) → (ψφ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-meredith 1406
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator