New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > luklem2 | GIF version |
Description: Used to rederive standard propositional axioms from Lukasiewicz'. (Contributed by NM, 22-Dec-2002.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
luklem2 | ⊢ ((φ → ¬ ψ) → (((φ → χ) → θ) → (ψ → θ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | luk-1 1420 | . . 3 ⊢ ((φ → ¬ ψ) → ((¬ ψ → χ) → (φ → χ))) | |
2 | luk-3 1422 | . . . 4 ⊢ (ψ → (¬ ψ → χ)) | |
3 | luk-1 1420 | . . . 4 ⊢ ((ψ → (¬ ψ → χ)) → (((¬ ψ → χ) → (φ → χ)) → (ψ → (φ → χ)))) | |
4 | 2, 3 | ax-mp 5 | . . 3 ⊢ (((¬ ψ → χ) → (φ → χ)) → (ψ → (φ → χ))) |
5 | 1, 4 | luklem1 1423 | . 2 ⊢ ((φ → ¬ ψ) → (ψ → (φ → χ))) |
6 | luk-1 1420 | . 2 ⊢ ((ψ → (φ → χ)) → (((φ → χ) → θ) → (ψ → θ))) | |
7 | 5, 6 | luklem1 1423 | 1 ⊢ ((φ → ¬ ψ) → (((φ → χ) → θ) → (ψ → θ))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-meredith 1406 |
This theorem is referenced by: luklem3 1425 luklem6 1428 ax3 1433 |
Copyright terms: Public domain | W3C validator |