NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  luklem2 GIF version

Theorem luklem2 1424
Description: Used to rederive standard propositional axioms from Lukasiewicz'. (Contributed by NM, 22-Dec-2002.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
luklem2 ((φ → ¬ ψ) → (((φχ) → θ) → (ψθ)))

Proof of Theorem luklem2
StepHypRef Expression
1 luk-1 1420 . . 3 ((φ → ¬ ψ) → ((¬ ψχ) → (φχ)))
2 luk-3 1422 . . . 4 (ψ → (¬ ψχ))
3 luk-1 1420 . . . 4 ((ψ → (¬ ψχ)) → (((¬ ψχ) → (φχ)) → (ψ → (φχ))))
42, 3ax-mp 5 . . 3 (((¬ ψχ) → (φχ)) → (ψ → (φχ)))
51, 4luklem1 1423 . 2 ((φ → ¬ ψ) → (ψ → (φχ)))
6 luk-1 1420 . 2 ((ψ → (φχ)) → (((φχ) → θ) → (ψθ)))
75, 6luklem1 1423 1 ((φ → ¬ ψ) → (((φχ) → θ) → (ψθ)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-meredith 1406
This theorem is referenced by:  luklem3  1425  luklem6  1428  ax3  1433
  Copyright terms: Public domain W3C validator