NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  bi2anan9r GIF version

Theorem bi2anan9r 844
Description: Deduction joining two equivalences to form equivalence of conjunctions. (Contributed by NM, 19-Feb-1996.)
Hypotheses
Ref Expression
bi2an9.1 (φ → (ψχ))
bi2an9.2 (θ → (τη))
Assertion
Ref Expression
bi2anan9r ((θ φ) → ((ψ τ) ↔ (χ η)))

Proof of Theorem bi2anan9r
StepHypRef Expression
1 bi2an9.1 . . 3 (φ → (ψχ))
2 bi2an9.2 . . 3 (θ → (τη))
31, 2bi2anan9 843 . 2 ((φ θ) → ((ψ τ) ↔ (χ η)))
43ancoms 439 1 ((θ φ) → ((ψ τ) ↔ (χ η)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator