New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > bi2anan9 | GIF version |
Description: Deduction joining two equivalences to form equivalence of conjunctions. (Contributed by NM, 31-Jul-1995.) |
Ref | Expression |
---|---|
bi2an9.1 | ⊢ (φ → (ψ ↔ χ)) |
bi2an9.2 | ⊢ (θ → (τ ↔ η)) |
Ref | Expression |
---|---|
bi2anan9 | ⊢ ((φ ∧ θ) → ((ψ ∧ τ) ↔ (χ ∧ η))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bi2an9.1 | . . 3 ⊢ (φ → (ψ ↔ χ)) | |
2 | 1 | anbi1d 685 | . 2 ⊢ (φ → ((ψ ∧ τ) ↔ (χ ∧ τ))) |
3 | bi2an9.2 | . . 3 ⊢ (θ → (τ ↔ η)) | |
4 | 3 | anbi2d 684 | . 2 ⊢ (θ → ((χ ∧ τ) ↔ (χ ∧ η))) |
5 | 2, 4 | sylan9bb 680 | 1 ⊢ ((φ ∧ θ) → ((ψ ∧ τ) ↔ (χ ∧ η))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 |
This theorem is referenced by: bi2anan9r 844 2mo 2282 2eu6 2289 2reu5 3045 ralprg 3776 raltpg 3778 prssg 3863 ssofeq 4078 ncfinraise 4482 ncfinlower 4484 nnpweq 4524 opelopab2a 4703 brsi 4762 dfxp2 5114 fvopab4t 5386 dff13 5472 resoprab2 5583 ovig 5598 brtxp 5784 fnpprod 5844 fundmen 6044 endisj 6052 mucnc 6132 peano4nc 6151 ce0addcnnul 6180 ce0nnulb 6183 ceclb 6184 ceclr 6188 sbth 6207 dflec2 6211 letc 6232 addcdi 6251 fnfrec 6321 |
Copyright terms: Public domain | W3C validator |