NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  bi2bian9 GIF version

Theorem bi2bian9 845
Description: Deduction joining two biconditionals with different antecedents. (Contributed by NM, 12-May-2004.)
Hypotheses
Ref Expression
bi2an9.1 (φ → (ψχ))
bi2an9.2 (θ → (τη))
Assertion
Ref Expression
bi2bian9 ((φ θ) → ((ψτ) ↔ (χη)))

Proof of Theorem bi2bian9
StepHypRef Expression
1 bi2an9.1 . . 3 (φ → (ψχ))
21adantr 451 . 2 ((φ θ) → (ψχ))
3 bi2an9.2 . . 3 (θ → (τη))
43adantl 452 . 2 ((φ θ) → (τη))
52, 4bibi12d 312 1 ((φ θ) → ((ψτ) ↔ (χη)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator