| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > pm4.72 | GIF version | ||
| Description: Implication in terms of biconditional and disjunction. Theorem *4.72 of [WhiteheadRussell] p. 121. (Contributed by NM, 30-Aug-1993.) (Proof shortened by Wolf Lammen, 30-Jan-2013.) |
| Ref | Expression |
|---|---|
| pm4.72 | ⊢ ((φ → ψ) ↔ (ψ ↔ (φ ∨ ψ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | olc 373 | . . 3 ⊢ (ψ → (φ ∨ ψ)) | |
| 2 | pm2.621 397 | . . 3 ⊢ ((φ → ψ) → ((φ ∨ ψ) → ψ)) | |
| 3 | 1, 2 | impbid2 195 | . 2 ⊢ ((φ → ψ) → (ψ ↔ (φ ∨ ψ))) |
| 4 | orc 374 | . . 3 ⊢ (φ → (φ ∨ ψ)) | |
| 5 | bi2 189 | . . 3 ⊢ ((ψ ↔ (φ ∨ ψ)) → ((φ ∨ ψ) → ψ)) | |
| 6 | 4, 5 | syl5 28 | . 2 ⊢ ((ψ ↔ (φ ∨ ψ)) → (φ → ψ)) |
| 7 | 3, 6 | impbii 180 | 1 ⊢ ((φ → ψ) ↔ (ψ ↔ (φ ∨ ψ))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 176 ∨ wo 357 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 df-or 359 |
| This theorem is referenced by: bigolden 901 ssequn1 3434 ssunsn2 3866 |
| Copyright terms: Public domain | W3C validator |