New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > bibi12d | GIF version |
Description: Deduction joining two equivalences to form equivalence of biconditionals. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
imbi12d.1 | ⊢ (φ → (ψ ↔ χ)) |
imbi12d.2 | ⊢ (φ → (θ ↔ τ)) |
Ref | Expression |
---|---|
bibi12d | ⊢ (φ → ((ψ ↔ θ) ↔ (χ ↔ τ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imbi12d.1 | . . 3 ⊢ (φ → (ψ ↔ χ)) | |
2 | 1 | bibi1d 310 | . 2 ⊢ (φ → ((ψ ↔ θ) ↔ (χ ↔ θ))) |
3 | imbi12d.2 | . . 3 ⊢ (φ → (θ ↔ τ)) | |
4 | 3 | bibi2d 309 | . 2 ⊢ (φ → ((χ ↔ θ) ↔ (χ ↔ τ))) |
5 | 2, 4 | bitrd 244 | 1 ⊢ (φ → ((ψ ↔ θ) ↔ (χ ↔ τ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 |
This theorem is referenced by: bi2bian9 845 xorbi12d 1315 cleqh 2450 abbi 2464 cleqf 2514 vtoclb 2913 vtoclbg 2916 ceqsexg 2971 elabgf 2984 reu6 3026 ru 3046 sbcbig 3093 sbcnestgf 3184 unineq 3506 preq12bg 4129 eqpw1 4163 pw111 4171 eqrelk 4213 opkelimagekg 4272 sikexlem 4296 insklem 4305 eqpw1uni 4331 cbviota 4345 iota2df 4366 opelopabsb 4698 br1stg 4731 opeliunxp2 4823 fvelimab 5371 eqfnfv 5393 fsng 5434 fressnfv 5440 isorel 5490 isocnv 5492 isotr 5496 caovord 5630 trtxp 5782 oqelins4 5795 txpcofun 5804 qrpprod 5837 fnfullfunlem1 5857 clos1basesucg 5885 extd 5924 xpassen 6058 enpw1 6063 dflec3 6222 lenc 6224 tc11 6229 |
Copyright terms: Public domain | W3C validator |