NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  bibi12d GIF version

Theorem bibi12d 312
Description: Deduction joining two equivalences to form equivalence of biconditionals. (Contributed by NM, 5-Aug-1993.)
Hypotheses
Ref Expression
imbi12d.1 (φ → (ψχ))
imbi12d.2 (φ → (θτ))
Assertion
Ref Expression
bibi12d (φ → ((ψθ) ↔ (χτ)))

Proof of Theorem bibi12d
StepHypRef Expression
1 imbi12d.1 . . 3 (φ → (ψχ))
21bibi1d 310 . 2 (φ → ((ψθ) ↔ (χθ)))
3 imbi12d.2 . . 3 (φ → (θτ))
43bibi2d 309 . 2 (φ → ((χθ) ↔ (χτ)))
52, 4bitrd 244 1 (φ → ((ψθ) ↔ (χτ)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177
This theorem is referenced by:  bi2bian9  845  xorbi12d  1315  cleqh  2450  abbi  2464  cleqf  2514  vtoclb  2913  vtoclbg  2916  ceqsexg  2971  elabgf  2984  reu6  3026  ru  3046  sbcbig  3093  sbcnestgf  3184  unineq  3506  preq12bg  4129  eqpw1  4163  pw111  4171  eqrelk  4213  opkelimagekg  4272  sikexlem  4296  insklem  4305  eqpw1uni  4331  cbviota  4345  iota2df  4366  opelopabsb  4698  br1stg  4731  opeliunxp2  4823  fvelimab  5371  eqfnfv  5393  fsng  5434  fressnfv  5440  isorel  5490  isocnv  5492  isotr  5496  caovord  5630  trtxp  5782  oqelins4  5795  txpcofun  5804  qrpprod  5837  fnfullfunlem1  5857  clos1basesucg  5885  extd  5924  xpassen  6058  enpw1  6063  dflec3  6222  lenc  6224  tc11  6229
  Copyright terms: Public domain W3C validator