New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > bibi12d | GIF version |
Description: Deduction joining two equivalences to form equivalence of biconditionals. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
imbi12d.1 | ⊢ (φ → (ψ ↔ χ)) |
imbi12d.2 | ⊢ (φ → (θ ↔ τ)) |
Ref | Expression |
---|---|
bibi12d | ⊢ (φ → ((ψ ↔ θ) ↔ (χ ↔ τ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imbi12d.1 | . . 3 ⊢ (φ → (ψ ↔ χ)) | |
2 | 1 | bibi1d 310 | . 2 ⊢ (φ → ((ψ ↔ θ) ↔ (χ ↔ θ))) |
3 | imbi12d.2 | . . 3 ⊢ (φ → (θ ↔ τ)) | |
4 | 3 | bibi2d 309 | . 2 ⊢ (φ → ((χ ↔ θ) ↔ (χ ↔ τ))) |
5 | 2, 4 | bitrd 244 | 1 ⊢ (φ → ((ψ ↔ θ) ↔ (χ ↔ τ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 |
This theorem is referenced by: bi2bian9 845 xorbi12d 1315 cleqh 2450 abbi 2463 cleqf 2513 vtoclb 2912 vtoclbg 2915 ceqsexg 2970 elabgf 2983 reu6 3025 ru 3045 sbcbig 3092 sbcnestgf 3183 unineq 3505 preq12bg 4128 eqpw1 4162 pw111 4170 eqrelk 4212 opkelimagekg 4271 sikexlem 4295 insklem 4304 eqpw1uni 4330 cbviota 4344 iota2df 4365 opelopabsb 4697 br1stg 4730 opeliunxp2 4822 fvelimab 5370 eqfnfv 5392 fsng 5433 fressnfv 5439 isorel 5489 isocnv 5491 isotr 5495 caovord 5629 trtxp 5781 oqelins4 5794 txpcofun 5803 qrpprod 5836 fnfullfunlem1 5856 clos1basesucg 5884 extd 5923 xpassen 6057 enpw1 6062 dflec3 6221 lenc 6223 tc11 6228 |
Copyright terms: Public domain | W3C validator |