New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > 3bitr4g | GIF version |
Description: More general version of 3bitr4i 268. Useful for converting definitions in a formula. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
3bitr4g.1 | ⊢ (φ → (ψ ↔ χ)) |
3bitr4g.2 | ⊢ (θ ↔ ψ) |
3bitr4g.3 | ⊢ (τ ↔ χ) |
Ref | Expression |
---|---|
3bitr4g | ⊢ (φ → (θ ↔ τ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitr4g.2 | . . 3 ⊢ (θ ↔ ψ) | |
2 | 3bitr4g.1 | . . 3 ⊢ (φ → (ψ ↔ χ)) | |
3 | 1, 2 | syl5bb 248 | . 2 ⊢ (φ → (θ ↔ χ)) |
4 | 3bitr4g.3 | . 2 ⊢ (τ ↔ χ) | |
5 | 3, 4 | syl6bbr 254 | 1 ⊢ (φ → (θ ↔ τ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 |
This theorem is referenced by: bibi1d 310 pm5.32rd 621 orbi2d 682 orbi1d 683 3orbi123d 1251 3anbi123d 1252 nanbi1 1295 nanbi2 1296 xorbi12d 1315 hadbi123d 1382 cadbi123d 1383 cad1 1398 had0 1403 nfbidf 1774 drex1 1967 drnf1 1969 drnf2 1970 cbvexd 2009 drsb1 2022 sbal2 2134 eujustALT 2207 eubid 2211 mobid 2238 eqeq1 2359 eqeq2 2362 eleq1 2413 eleq2 2414 nfceqdf 2489 drnfc1 2506 drnfc2 2507 neeq1 2525 neeq2 2526 neleq1 2608 neleq2 2609 ralbida 2629 rexbida 2630 ralbidv2 2637 rexbidv2 2638 r19.21t 2700 r19.23t 2729 ralcom2 2776 reubida 2794 rmobida 2799 raleqf 2804 rexeqf 2805 reueq1f 2806 rmoeq1f 2807 cbvraldva2 2840 cbvrexdva2 2841 dfsbcq 3049 sbcbid 3100 sbcrext 3120 sbcabel 3124 sbnfc2 3197 elin 3220 elun 3221 psseq1 3357 psseq2 3358 ssconb 3400 uneq1 3412 ineq1 3451 difin2 3517 reuun2 3539 reldisj 3595 undif4 3608 disjssun 3609 pssdifcom1 3636 pssdifcom2 3637 sbcss 3661 eltpg 3770 raltpg 3778 rextpg 3779 intmin4 3956 dfiun2g 4000 iindif2 4036 iinin2 4037 iinxprg 4044 ssofeq 4078 xpkeq1 4199 xpkeq2 4200 opkelimagekg 4272 iotaeq 4348 sniota 4370 sfineq1 4527 sfineq2 4528 phialllem1 4617 breq 4642 breq1 4643 breq2 4644 elimasn 5020 dfco2a 5082 imadif 5172 fneq1 5174 fneq2 5175 feq1 5211 feq2 5212 feq3 5213 fcnvres 5244 f1eq1 5254 f1eq2 5255 f1eq3 5256 foeq1 5266 foeq2 5267 foeq3 5268 f1oeq1 5282 f1oeq2 5283 f1oeq3 5284 fun11iun 5306 dmfco 5382 dffo3 5423 funiunfv 5468 dff13 5472 isoeq1 5483 isoeq2 5484 isoeq3 5485 isoeq4 5486 isoeq5 5487 isomin 5497 mpt2eq123 5662 clos1basesucg 5885 erdmrn 5966 ereldm 5972 ce0nnul 6178 nmembers1lem3 6271 epelcres 6329 |
Copyright terms: Public domain | W3C validator |