New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > syl2im | GIF version |
Description: Replace two antecedents. Implication-only version of syl2an 463. (Contributed by Wolf Lammen, 14-May-2013.) |
Ref | Expression |
---|---|
syl2im.1 | ⊢ (φ → ψ) |
syl2im.2 | ⊢ (χ → θ) |
syl2im.3 | ⊢ (ψ → (θ → τ)) |
Ref | Expression |
---|---|
syl2im | ⊢ (φ → (χ → τ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl2im.1 | . 2 ⊢ (φ → ψ) | |
2 | syl2im.2 | . . 3 ⊢ (χ → θ) | |
3 | syl2im.3 | . . 3 ⊢ (ψ → (θ → τ)) | |
4 | 2, 3 | syl5 28 | . 2 ⊢ (ψ → (χ → τ)) |
5 | 1, 4 | syl 15 | 1 ⊢ (φ → (χ → τ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: sylc 56 bi3ant 280 sp 1747 spOLD 1748 hbimdOLD 1816 dvelimv 1939 a16g 1945 ltfintr 4460 |
Copyright terms: Public domain | W3C validator |