| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > biantr | GIF version | ||
| Description: A transitive law of equivalence. Compare Theorem *4.22 of [WhiteheadRussell] p. 117. (Contributed by NM, 18-Aug-1993.) | 
| Ref | Expression | 
|---|---|
| biantr | ⊢ (((φ ↔ ψ) ∧ (χ ↔ ψ)) → (φ ↔ χ)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | id 19 | . . 3 ⊢ ((χ ↔ ψ) → (χ ↔ ψ)) | |
| 2 | 1 | bibi2d 309 | . 2 ⊢ ((χ ↔ ψ) → ((φ ↔ χ) ↔ (φ ↔ ψ))) | 
| 3 | 2 | biimparc 473 | 1 ⊢ (((φ ↔ ψ) ∧ (χ ↔ ψ)) → (φ ↔ χ)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 177 df-an 360 | 
| This theorem is referenced by: bm1.1 2338 | 
| Copyright terms: Public domain | W3C validator |