NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  biantr GIF version

Theorem biantr 897
Description: A transitive law of equivalence. Compare Theorem *4.22 of [WhiteheadRussell] p. 117. (Contributed by NM, 18-Aug-1993.)
Assertion
Ref Expression
biantr (((φψ) (χψ)) → (φχ))

Proof of Theorem biantr
StepHypRef Expression
1 id 19 . . 3 ((χψ) → (χψ))
21bibi2d 309 . 2 ((χψ) → ((φχ) ↔ (φψ)))
32biimparc 473 1 (((φψ) (χψ)) → (φχ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360
This theorem is referenced by:  bm1.1  2338
  Copyright terms: Public domain W3C validator