New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > biantr | GIF version |
Description: A transitive law of equivalence. Compare Theorem *4.22 of [WhiteheadRussell] p. 117. (Contributed by NM, 18-Aug-1993.) |
Ref | Expression |
---|---|
biantr | ⊢ (((φ ↔ ψ) ∧ (χ ↔ ψ)) → (φ ↔ χ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . . 3 ⊢ ((χ ↔ ψ) → (χ ↔ ψ)) | |
2 | 1 | bibi2d 309 | . 2 ⊢ ((χ ↔ ψ) → ((φ ↔ χ) ↔ (φ ↔ ψ))) |
3 | 2 | biimparc 473 | 1 ⊢ (((φ ↔ ψ) ∧ (χ ↔ ψ)) → (φ ↔ χ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 |
This theorem is referenced by: bm1.1 2338 |
Copyright terms: Public domain | W3C validator |