NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  pclem6 GIF version

Theorem pclem6 896
Description: Negation inferred from embedded conjunct. (Contributed by NM, 20-Aug-1993.) (Proof shortened by Wolf Lammen, 25-Nov-2012.)
Assertion
Ref Expression
pclem6 ((φ ↔ (ψ ¬ φ)) → ¬ ψ)

Proof of Theorem pclem6
StepHypRef Expression
1 ibar 490 . . 3 (ψ → (¬ φ ↔ (ψ ¬ φ)))
2 nbbn 347 . . 3 ((¬ φ ↔ (ψ ¬ φ)) ↔ ¬ (φ ↔ (ψ ¬ φ)))
31, 2sylib 188 . 2 (ψ → ¬ (φ ↔ (ψ ¬ φ)))
43con2i 112 1 ((φ ↔ (ψ ¬ φ)) → ¬ ψ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 176   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator