NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  biimparc GIF version

Theorem biimparc 473
Description: Inference from a logical equivalence. (Contributed by NM, 3-May-1994.)
Hypothesis
Ref Expression
biimpa.1 (φ → (ψχ))
Assertion
Ref Expression
biimparc ((χ φ) → ψ)

Proof of Theorem biimparc
StepHypRef Expression
1 biimpa.1 . . 3 (φ → (ψχ))
21biimprcd 216 . 2 (χ → (φψ))
32imp 418 1 ((χ φ) → ψ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360
This theorem is referenced by:  biantr  897  difprsnss  3847  fun11iun  5306  eqfnfv2  5394  fmpt  5693
  Copyright terms: Public domain W3C validator