New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > biimparc | GIF version |
Description: Inference from a logical equivalence. (Contributed by NM, 3-May-1994.) |
Ref | Expression |
---|---|
biimpa.1 | ⊢ (φ → (ψ ↔ χ)) |
Ref | Expression |
---|---|
biimparc | ⊢ ((χ ∧ φ) → ψ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biimpa.1 | . . 3 ⊢ (φ → (ψ ↔ χ)) | |
2 | 1 | biimprcd 216 | . 2 ⊢ (χ → (φ → ψ)) |
3 | 2 | imp 418 | 1 ⊢ ((χ ∧ φ) → ψ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 |
This theorem is referenced by: biantr 897 difprsnss 3847 fun11iun 5306 eqfnfv2 5394 fmpt 5693 |
Copyright terms: Public domain | W3C validator |