New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > bibi2d | GIF version |
Description: Deduction adding a biconditional to the left in an equivalence. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 19-May-2013.) |
Ref | Expression |
---|---|
imbid.1 | ⊢ (φ → (ψ ↔ χ)) |
Ref | Expression |
---|---|
bibi2d | ⊢ (φ → ((θ ↔ ψ) ↔ (θ ↔ χ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imbid.1 | . . . . 5 ⊢ (φ → (ψ ↔ χ)) | |
2 | 1 | pm5.74i 236 | . . . 4 ⊢ ((φ → ψ) ↔ (φ → χ)) |
3 | 2 | bibi2i 304 | . . 3 ⊢ (((φ → θ) ↔ (φ → ψ)) ↔ ((φ → θ) ↔ (φ → χ))) |
4 | pm5.74 235 | . . 3 ⊢ ((φ → (θ ↔ ψ)) ↔ ((φ → θ) ↔ (φ → ψ))) | |
5 | pm5.74 235 | . . 3 ⊢ ((φ → (θ ↔ χ)) ↔ ((φ → θ) ↔ (φ → χ))) | |
6 | 3, 4, 5 | 3bitr4i 268 | . 2 ⊢ ((φ → (θ ↔ ψ)) ↔ (φ → (θ ↔ χ))) |
7 | 6 | pm5.74ri 237 | 1 ⊢ (φ → ((θ ↔ ψ) ↔ (θ ↔ χ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 |
This theorem is referenced by: bibi1d 310 bibi12d 312 biantr 897 bimsc1 904 eujust 2206 eujustALT 2207 euf 2210 ceqex 2970 reu6i 3028 sbc2or 3055 iotaval 4351 iota5 4360 copsexg 4608 isoeq1 5483 isoeq3 5485 isores2 5494 isoini2 5499 caovord 5630 extd 5924 |
Copyright terms: Public domain | W3C validator |