NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  bibi2d GIF version

Theorem bibi2d 309
Description: Deduction adding a biconditional to the left in an equivalence. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 19-May-2013.)
Hypothesis
Ref Expression
imbid.1 (φ → (ψχ))
Assertion
Ref Expression
bibi2d (φ → ((θψ) ↔ (θχ)))

Proof of Theorem bibi2d
StepHypRef Expression
1 imbid.1 . . . . 5 (φ → (ψχ))
21pm5.74i 236 . . . 4 ((φψ) ↔ (φχ))
32bibi2i 304 . . 3 (((φθ) ↔ (φψ)) ↔ ((φθ) ↔ (φχ)))
4 pm5.74 235 . . 3 ((φ → (θψ)) ↔ ((φθ) ↔ (φψ)))
5 pm5.74 235 . . 3 ((φ → (θχ)) ↔ ((φθ) ↔ (φχ)))
63, 4, 53bitr4i 268 . 2 ((φ → (θψ)) ↔ (φ → (θχ)))
76pm5.74ri 237 1 (φ → ((θψ) ↔ (θχ)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177
This theorem is referenced by:  bibi1d  310  bibi12d  312  biantr  897  bimsc1  904  eujust  2206  eujustALT  2207  euf  2210  ceqex  2970  reu6i  3028  sbc2or  3055  iotaval  4351  iota5  4360  copsexg  4608  isoeq1  5483  isoeq3  5485  isores2  5494  isoini2  5499  caovord  5630  extd  5924
  Copyright terms: Public domain W3C validator