NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  bifal GIF version

Theorem bifal 1327
Description: A contradiction is equivalent to falsehood. (Contributed by Mario Carneiro, 9-May-2015.)
Hypothesis
Ref Expression
bifal.1 ¬ φ
Assertion
Ref Expression
bifal (φ ↔ ⊥ )

Proof of Theorem bifal
StepHypRef Expression
1 bifal.1 . 2 ¬ φ
2 fal 1322 . 2 ¬ ⊥
31, 22false 339 1 (φ ↔ ⊥ )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 176  wfal 1317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-tru 1319  df-fal 1320
This theorem is referenced by:  truanfal  1337  falantru  1338  trubifal  1351  spfalwOLD  1699
  Copyright terms: Public domain W3C validator