NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  falim GIF version

Theorem falim 1328
Description: implies anything. (Contributed by FL, 20-Mar-2011.) (Proof shortened by Anthony Hart, 1-Aug-2011.)
Assertion
Ref Expression
falim ( ⊥ → φ)

Proof of Theorem falim
StepHypRef Expression
1 fal 1322 . 2 ¬ ⊥
21pm2.21i 123 1 ( ⊥ → φ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wfal 1317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-tru 1319  df-fal 1320
This theorem is referenced by:  falimd  1329  dfnot  1332  falimtru  1346  tbw-bijust  1463  tbw-negdf  1464  tbw-ax4  1468  merco1  1478  merco2  1501
  Copyright terms: Public domain W3C validator