New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > bija | GIF version |
Description: Combine antecedents into a single bi-conditional. This inference, reminiscent of ja 153, is reversible: The hypotheses can be deduced from the conclusion alone (see pm5.1im 229 and pm5.21im 338). (Contributed by Wolf Lammen, 13-May-2013.) |
Ref | Expression |
---|---|
bija.1 | ⊢ (φ → (ψ → χ)) |
bija.2 | ⊢ (¬ φ → (¬ ψ → χ)) |
Ref | Expression |
---|---|
bija | ⊢ ((φ ↔ ψ) → χ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bi2 189 | . . 3 ⊢ ((φ ↔ ψ) → (ψ → φ)) | |
2 | bija.1 | . . 3 ⊢ (φ → (ψ → χ)) | |
3 | 1, 2 | syli 33 | . 2 ⊢ ((φ ↔ ψ) → (ψ → χ)) |
4 | bi1 178 | . . . 4 ⊢ ((φ ↔ ψ) → (φ → ψ)) | |
5 | 4 | con3d 125 | . . 3 ⊢ ((φ ↔ ψ) → (¬ ψ → ¬ φ)) |
6 | bija.2 | . . 3 ⊢ (¬ φ → (¬ ψ → χ)) | |
7 | 5, 6 | syli 33 | . 2 ⊢ ((φ ↔ ψ) → (¬ ψ → χ)) |
8 | 3, 7 | pm2.61d 150 | 1 ⊢ ((φ ↔ ψ) → χ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |