NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  con1 GIF version

Theorem con1 120
Description: Contraposition. Theorem *2.15 of [WhiteheadRussell] p. 102. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 12-Feb-2013.)
Assertion
Ref Expression
con1 ((¬ φψ) → (¬ ψφ))

Proof of Theorem con1
StepHypRef Expression
1 id 19 . 2 ((¬ φψ) → (¬ φψ))
21con1d 116 1 ((¬ φψ) → (¬ ψφ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem is referenced by:  con1b  323  ax12olem3  1929
  Copyright terms: Public domain W3C validator