New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > con1d | GIF version |
Description: A contraposition deduction. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
con1d.1 | ⊢ (φ → (¬ ψ → χ)) |
Ref | Expression |
---|---|
con1d | ⊢ (φ → (¬ χ → ψ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | con1d.1 | . . 3 ⊢ (φ → (¬ ψ → χ)) | |
2 | notnot1 114 | . . 3 ⊢ (χ → ¬ ¬ χ) | |
3 | 1, 2 | syl6 29 | . 2 ⊢ (φ → (¬ ψ → ¬ ¬ χ)) |
4 | 3 | con4d 97 | 1 ⊢ (φ → (¬ χ → ψ)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: mt3d 117 con1 120 con3d 125 pm2.24d 135 pm2.61d 150 pm2.8 823 dedlem0b 919 meredith 1404 19.9ht 1778 19.9tOLD 1857 ax12olem3 1929 necon3bd 2554 necon4bd 2579 necon1ad 2584 sspss 3369 neldif 3392 nnsucelr 4429 funiunfv 5468 |
Copyright terms: Public domain | W3C validator |