New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > nsyl2 | GIF version |
Description: A negated syllogism inference. (Contributed by NM, 26-Jun-1994.) |
Ref | Expression |
---|---|
nsyl2.1 | ⊢ (φ → ¬ ψ) |
nsyl2.2 | ⊢ (¬ χ → ψ) |
Ref | Expression |
---|---|
nsyl2 | ⊢ (φ → χ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nsyl2.1 | . 2 ⊢ (φ → ¬ ψ) | |
2 | nsyl2.2 | . . 3 ⊢ (¬ χ → ψ) | |
3 | 2 | a1i 10 | . 2 ⊢ (φ → (¬ χ → ψ)) |
4 | 1, 3 | mt3d 117 | 1 ⊢ (φ → χ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: con1i 121 con4i 122 dvelimv 1939 ecexr 5951 |
Copyright terms: Public domain | W3C validator |