New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > df-2nd | GIF version |
Description: Define the 2nd function. This function extracts the second member of an ordered pair. (Contributed by SF, 5-Jan-2015.) |
Ref | Expression |
---|---|
df-2nd | ⊢ 2nd = {〈x, y〉 ∣ ∃z x = 〈z, y〉} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | c2nd 4784 | . 2 class 2nd | |
2 | vx | . . . . . 6 setvar x | |
3 | 2 | cv 1641 | . . . . 5 class x |
4 | vz | . . . . . . 7 setvar z | |
5 | 4 | cv 1641 | . . . . . 6 class z |
6 | vy | . . . . . . 7 setvar y | |
7 | 6 | cv 1641 | . . . . . 6 class y |
8 | 5, 7 | cop 4562 | . . . . 5 class 〈z, y〉 |
9 | 3, 8 | wceq 1642 | . . . 4 wff x = 〈z, y〉 |
10 | 9, 4 | wex 1541 | . . 3 wff ∃z x = 〈z, y〉 |
11 | 10, 2, 6 | copab 4623 | . 2 class {〈x, y〉 ∣ ∃z x = 〈z, y〉} |
12 | 1, 11 | wceq 1642 | 1 wff 2nd = {〈x, y〉 ∣ ∃z x = 〈z, y〉} |
Colors of variables: wff setvar class |
This definition is referenced by: br2nd 4860 df2nd2 5112 |
Copyright terms: Public domain | W3C validator |