NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  df-2nd GIF version

Definition df-2nd 4798
Description: Define the 2nd function. This function extracts the second member of an ordered pair. (Contributed by SF, 5-Jan-2015.)
Assertion
Ref Expression
df-2nd 2nd = {x, y z x = z, y}
Distinct variable group:   x,y,z

Detailed syntax breakdown of Definition df-2nd
StepHypRef Expression
1 c2nd 4784 . 2 class 2nd
2 vx . . . . . 6 setvar x
32cv 1641 . . . . 5 class x
4 vz . . . . . . 7 setvar z
54cv 1641 . . . . . 6 class z
6 vy . . . . . . 7 setvar y
76cv 1641 . . . . . 6 class y
85, 7cop 4562 . . . . 5 class z, y
93, 8wceq 1642 . . . 4 wff x = z, y
109, 4wex 1541 . . 3 wff z x = z, y
1110, 2, 6copab 4623 . 2 class {x, y z x = z, y}
121, 11wceq 1642 1 wff 2nd = {x, y z x = z, y}
Colors of variables: wff setvar class
This definition is referenced by:  br2nd  4860  df2nd2  5112
  Copyright terms: Public domain W3C validator