| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > df-2nd | GIF version | ||
| Description: Define the 2nd function. This function extracts the second member of an ordered pair. (Contributed by SF, 5-Jan-2015.) |
| Ref | Expression |
|---|---|
| df-2nd | ⊢ 2nd = {〈x, y〉 ∣ ∃z x = 〈z, y〉} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | c2nd 4784 | . 2 class 2nd | |
| 2 | vx | . . . . . 6 setvar x | |
| 3 | 2 | cv 1641 | . . . . 5 class x |
| 4 | vz | . . . . . . 7 setvar z | |
| 5 | 4 | cv 1641 | . . . . . 6 class z |
| 6 | vy | . . . . . . 7 setvar y | |
| 7 | 6 | cv 1641 | . . . . . 6 class y |
| 8 | 5, 7 | cop 4562 | . . . . 5 class 〈z, y〉 |
| 9 | 3, 8 | wceq 1642 | . . . 4 wff x = 〈z, y〉 |
| 10 | 9, 4 | wex 1541 | . . 3 wff ∃z x = 〈z, y〉 |
| 11 | 10, 2, 6 | copab 4623 | . 2 class {〈x, y〉 ∣ ∃z x = 〈z, y〉} |
| 12 | 1, 11 | wceq 1642 | 1 wff 2nd = {〈x, y〉 ∣ ∃z x = 〈z, y〉} |
| Colors of variables: wff setvar class |
| This definition is referenced by: br2nd 4860 df2nd2 5112 |
| Copyright terms: Public domain | W3C validator |