NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  df2nd2 GIF version

Theorem df2nd2 5112
Description: Alternate definition of the 2nd function. (Contributed by SF, 8-Jan-2015.)
Assertion
Ref Expression
df2nd2 2nd = (1st Swap )

Proof of Theorem df2nd2
Dummy variables x y z w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2863 . . . . . . . 8 y V
21br1st 4859 . . . . . . 7 (w1st yz w = y, z)
32anbi1i 676 . . . . . 6 ((w1st y x Swap w) ↔ (z w = y, z x Swap w))
4 ancom 437 . . . . . 6 ((x Swap w w1st y) ↔ (w1st y x Swap w))
5 19.41v 1901 . . . . . 6 (z(w = y, z x Swap w) ↔ (z w = y, z x Swap w))
63, 4, 53bitr4i 268 . . . . 5 ((x Swap w w1st y) ↔ z(w = y, z x Swap w))
76exbii 1582 . . . 4 (w(x Swap w w1st y) ↔ wz(w = y, z x Swap w))
8 excom 1741 . . . 4 (zw(w = y, z x Swap w) ↔ wz(w = y, z x Swap w))
9 vex 2863 . . . . . . . 8 z V
101, 9opex 4589 . . . . . . 7 y, z V
11 breq2 4644 . . . . . . 7 (w = y, z → (x Swap wx Swap y, z))
1210, 11ceqsexv 2895 . . . . . 6 (w(w = y, z x Swap w) ↔ x Swap y, z)
131, 9brswap2 4861 . . . . . 6 (x Swap y, zx = z, y)
1412, 13bitri 240 . . . . 5 (w(w = y, z x Swap w) ↔ x = z, y)
1514exbii 1582 . . . 4 (zw(w = y, z x Swap w) ↔ z x = z, y)
167, 8, 153bitr2ri 265 . . 3 (z x = z, yw(x Swap w w1st y))
1716opabbii 4627 . 2 {x, y z x = z, y} = {x, y w(x Swap w w1st y)}
18 df-2nd 4798 . 2 2nd = {x, y z x = z, y}
19 df-co 4727 . 2 (1st Swap ) = {x, y w(x Swap w w1st y)}
2017, 18, 193eqtr4i 2383 1 2nd = (1st Swap )
Colors of variables: wff setvar class
Syntax hints:   wa 358  wex 1541   = wceq 1642  cop 4562  {copab 4623   class class class wbr 4640  1st c1st 4718   Swap cswap 4719   ccom 4722  2nd c2nd 4784
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-reu 2622  df-rmo 2623  df-rab 2624  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-pss 3262  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-iota 4340  df-0c 4378  df-addc 4379  df-nnc 4380  df-fin 4381  df-lefin 4441  df-ltfin 4442  df-ncfin 4443  df-tfin 4444  df-evenfin 4445  df-oddfin 4446  df-sfin 4447  df-spfin 4448  df-phi 4566  df-op 4567  df-proj1 4568  df-proj2 4569  df-opab 4624  df-br 4641  df-1st 4724  df-swap 4725  df-co 4727  df-2nd 4798
This theorem is referenced by:  2ndex  5113
  Copyright terms: Public domain W3C validator