New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > xpeq1 | GIF version |
Description: Equality theorem for cross product. (Contributed by NM, 4-Jul-1994.) |
Ref | Expression |
---|---|
xpeq1 | ⊢ (A = B → (A × C) = (B × C)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2 2414 | . . . 4 ⊢ (A = B → (x ∈ A ↔ x ∈ B)) | |
2 | 1 | anbi1d 685 | . . 3 ⊢ (A = B → ((x ∈ A ∧ y ∈ C) ↔ (x ∈ B ∧ y ∈ C))) |
3 | 2 | opabbidv 4626 | . 2 ⊢ (A = B → {〈x, y〉 ∣ (x ∈ A ∧ y ∈ C)} = {〈x, y〉 ∣ (x ∈ B ∧ y ∈ C)}) |
4 | df-xp 4785 | . 2 ⊢ (A × C) = {〈x, y〉 ∣ (x ∈ A ∧ y ∈ C)} | |
5 | df-xp 4785 | . 2 ⊢ (B × C) = {〈x, y〉 ∣ (x ∈ B ∧ y ∈ C)} | |
6 | 3, 4, 5 | 3eqtr4g 2410 | 1 ⊢ (A = B → (A × C) = (B × C)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 = wceq 1642 ∈ wcel 1710 {copab 4623 × cxp 4771 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-opab 4624 df-xp 4785 |
This theorem is referenced by: xpeq12 4804 xpeq1i 4805 xpeq1d 4808 dmxpid 4925 reseq2 4930 xpnz 5046 xpdisj1 5048 xpcan2 5059 ovcross 5846 pmvalg 6011 xpsneng 6051 xpcomeng 6054 |
Copyright terms: Public domain | W3C validator |