NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  df-iso GIF version

Definition df-iso 4797
Description: Define the isomorphism predicate. We read this as "H is an R, S isomorphism of A onto B." Normally, R and S are ordering relations on A and B respectively. Definition 6.28 of [TakeutiZaring] p. 32, whose notation is the same as ours except that R and S are subscripts. (Contributed by SF, 5-Jan-2015.)
Assertion
Ref Expression
df-iso (H Isom R, S (A, B) ↔ (H:A1-1-ontoB x A y A (xRy ↔ (Hx)S(Hy))))
Distinct variable groups:   x,y,A   x,B,y   x,R,y   x,S,y   x,H,y

Detailed syntax breakdown of Definition df-iso
StepHypRef Expression
1 cA . . 3 class A
2 cB . . 3 class B
3 cR . . 3 class R
4 cS . . 3 class S
5 cH . . 3 class H
61, 2, 3, 4, 5wiso 4783 . 2 wff H Isom R, S (A, B)
71, 2, 5wf1o 4781 . . 3 wff H:A1-1-ontoB
8 vx . . . . . . . 8 setvar x
98cv 1641 . . . . . . 7 class x
10 vy . . . . . . . 8 setvar y
1110cv 1641 . . . . . . 7 class y
129, 11, 3wbr 4640 . . . . . 6 wff xRy
139, 5cfv 4782 . . . . . . 7 class (Hx)
1411, 5cfv 4782 . . . . . . 7 class (Hy)
1513, 14, 4wbr 4640 . . . . . 6 wff (Hx)S(Hy)
1612, 15wb 176 . . . . 5 wff (xRy ↔ (Hx)S(Hy))
1716, 10, 1wral 2615 . . . 4 wff y A (xRy ↔ (Hx)S(Hy))
1817, 8, 1wral 2615 . . 3 wff x A y A (xRy ↔ (Hx)S(Hy))
197, 18wa 358 . 2 wff (H:A1-1-ontoB x A y A (xRy ↔ (Hx)S(Hy)))
206, 19wb 176 1 wff (H Isom R, S (A, B) ↔ (H:A1-1-ontoB x A y A (xRy ↔ (Hx)S(Hy))))
Colors of variables: wff setvar class
This definition is referenced by:  isoeq1  5483  isoeq2  5484  isoeq3  5485  isoeq4  5486  isoeq5  5487  nfiso  5488  isof1o  5489  isorel  5490  isoid  5491  isocnv  5492  isocnv2  5493  isores2  5494  isotr  5496  isoini2  5499  f1oiso  5500
  Copyright terms: Public domain W3C validator