![]() |
New Foundations Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > NFE Home > Th. List > df-iso | GIF version |
Description: Define the isomorphism predicate. We read this as "H is an R, S isomorphism of A onto B." Normally, R and S are ordering relations on A and B respectively. Definition 6.28 of [TakeutiZaring] p. 32, whose notation is the same as ours except that R and S are subscripts. (Contributed by SF, 5-Jan-2015.) |
Ref | Expression |
---|---|
df-iso | ⊢ (H Isom R, S (A, B) ↔ (H:A–1-1-onto→B ∧ ∀x ∈ A ∀y ∈ A (xRy ↔ (H ‘x)S(H ‘y)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class A | |
2 | cB | . . 3 class B | |
3 | cR | . . 3 class R | |
4 | cS | . . 3 class S | |
5 | cH | . . 3 class H | |
6 | 1, 2, 3, 4, 5 | wiso 4783 | . 2 wff H Isom R, S (A, B) |
7 | 1, 2, 5 | wf1o 4781 | . . 3 wff H:A–1-1-onto→B |
8 | vx | . . . . . . . 8 setvar x | |
9 | 8 | cv 1641 | . . . . . . 7 class x |
10 | vy | . . . . . . . 8 setvar y | |
11 | 10 | cv 1641 | . . . . . . 7 class y |
12 | 9, 11, 3 | wbr 4640 | . . . . . 6 wff xRy |
13 | 9, 5 | cfv 4782 | . . . . . . 7 class (H ‘x) |
14 | 11, 5 | cfv 4782 | . . . . . . 7 class (H ‘y) |
15 | 13, 14, 4 | wbr 4640 | . . . . . 6 wff (H ‘x)S(H ‘y) |
16 | 12, 15 | wb 176 | . . . . 5 wff (xRy ↔ (H ‘x)S(H ‘y)) |
17 | 16, 10, 1 | wral 2615 | . . . 4 wff ∀y ∈ A (xRy ↔ (H ‘x)S(H ‘y)) |
18 | 17, 8, 1 | wral 2615 | . . 3 wff ∀x ∈ A ∀y ∈ A (xRy ↔ (H ‘x)S(H ‘y)) |
19 | 7, 18 | wa 358 | . 2 wff (H:A–1-1-onto→B ∧ ∀x ∈ A ∀y ∈ A (xRy ↔ (H ‘x)S(H ‘y))) |
20 | 6, 19 | wb 176 | 1 wff (H Isom R, S (A, B) ↔ (H:A–1-1-onto→B ∧ ∀x ∈ A ∀y ∈ A (xRy ↔ (H ‘x)S(H ‘y)))) |
Colors of variables: wff setvar class |
This definition is referenced by: isoeq1 5483 isoeq2 5484 isoeq3 5485 isoeq4 5486 isoeq5 5487 nfiso 5488 isof1o 5489 isorel 5490 isoid 5491 isocnv 5492 isocnv2 5493 isores2 5494 isotr 5496 isoini2 5499 f1oiso 5500 |
Copyright terms: Public domain | W3C validator |