Detailed syntax breakdown of Definition df-iso
Step | Hyp | Ref
| Expression |
1 | | cA |
. . 3
class A |
2 | | cB |
. . 3
class B |
3 | | cR |
. . 3
class R |
4 | | cS |
. . 3
class S |
5 | | cH |
. . 3
class H |
6 | 1, 2, 3, 4, 5 | wiso 4783 |
. 2
wff H
Isom R, S (A, B) |
7 | 1, 2, 5 | wf1o 4781 |
. . 3
wff H:A–1-1-onto→B |
8 | | vx |
. . . . . . . 8
setvar x |
9 | 8 | cv 1641 |
. . . . . . 7
class x |
10 | | vy |
. . . . . . . 8
setvar y |
11 | 10 | cv 1641 |
. . . . . . 7
class y |
12 | 9, 11, 3 | wbr 4640 |
. . . . . 6
wff xRy |
13 | 9, 5 | cfv 4782 |
. . . . . . 7
class (H ‘x) |
14 | 11, 5 | cfv 4782 |
. . . . . . 7
class (H ‘y) |
15 | 13, 14, 4 | wbr 4640 |
. . . . . 6
wff (H
‘x)S(H
‘y) |
16 | 12, 15 | wb 176 |
. . . . 5
wff (xRy ↔ (H
‘x)S(H
‘y)) |
17 | 16, 10, 1 | wral 2615 |
. . . 4
wff ∀y ∈ A (xRy ↔ (H
‘x)S(H
‘y)) |
18 | 17, 8, 1 | wral 2615 |
. . 3
wff ∀x ∈ A ∀y ∈ A (xRy ↔ (H
‘x)S(H
‘y)) |
19 | 7, 18 | wa 358 |
. 2
wff (H:A–1-1-onto→B ∧ ∀x ∈ A ∀y ∈ A (xRy ↔
(H ‘x)S(H ‘y))) |
20 | 6, 19 | wb 176 |
1
wff (H
Isom R, S (A, B) ↔ (H:A–1-1-onto→B ∧ ∀x ∈ A ∀y ∈ A (xRy ↔
(H ‘x)S(H ‘y)))) |