New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > opkltfing | GIF version |
Description: Kuratowski ordered pair membership in finite less than. (Contributed by SF, 27-Jan-2015.) |
Ref | Expression |
---|---|
opkltfing | ⊢ ((A ∈ V ∧ B ∈ W) → (⟪A, B⟫ ∈ <fin ↔ (A ≠ ∅ ∧ ∃x ∈ Nn B = ((A +c x) +c 1c)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ltfin 4442 | . 2 ⊢ <fin = {y ∣ ∃z∃w(y = ⟪z, w⟫ ∧ (z ≠ ∅ ∧ ∃x ∈ Nn w = ((z +c x) +c 1c)))} | |
2 | neeq1 2525 | . . 3 ⊢ (z = A → (z ≠ ∅ ↔ A ≠ ∅)) | |
3 | addceq1 4384 | . . . . . 6 ⊢ (z = A → (z +c x) = (A +c x)) | |
4 | 3 | addceq1d 4390 | . . . . 5 ⊢ (z = A → ((z +c x) +c 1c) = ((A +c x) +c 1c)) |
5 | 4 | eqeq2d 2364 | . . . 4 ⊢ (z = A → (w = ((z +c x) +c 1c) ↔ w = ((A +c x) +c 1c))) |
6 | 5 | rexbidv 2636 | . . 3 ⊢ (z = A → (∃x ∈ Nn w = ((z +c x) +c 1c) ↔ ∃x ∈ Nn w = ((A +c x) +c 1c))) |
7 | 2, 6 | anbi12d 691 | . 2 ⊢ (z = A → ((z ≠ ∅ ∧ ∃x ∈ Nn w = ((z +c x) +c 1c)) ↔ (A ≠ ∅ ∧ ∃x ∈ Nn w = ((A +c x) +c 1c)))) |
8 | eqeq1 2359 | . . . 4 ⊢ (w = B → (w = ((A +c x) +c 1c) ↔ B = ((A +c x) +c 1c))) | |
9 | 8 | rexbidv 2636 | . . 3 ⊢ (w = B → (∃x ∈ Nn w = ((A +c x) +c 1c) ↔ ∃x ∈ Nn B = ((A +c x) +c 1c))) |
10 | 9 | anbi2d 684 | . 2 ⊢ (w = B → ((A ≠ ∅ ∧ ∃x ∈ Nn w = ((A +c x) +c 1c)) ↔ (A ≠ ∅ ∧ ∃x ∈ Nn B = ((A +c x) +c 1c)))) |
11 | 1, 7, 10 | opkelopkabg 4246 | 1 ⊢ ((A ∈ V ∧ B ∈ W) → (⟪A, B⟫ ∈ <fin ↔ (A ≠ ∅ ∧ ∃x ∈ Nn B = ((A +c x) +c 1c)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 = wceq 1642 ∈ wcel 1710 ≠ wne 2517 ∃wrex 2616 ∅c0 3551 ⟪copk 4058 1cc1c 4135 Nn cnnc 4374 +c cplc 4376 <fin cltfin 4434 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-rex 2621 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-nul 3552 df-pw 3725 df-sn 3742 df-pr 3743 df-opk 4059 df-1c 4137 df-pw1 4138 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-sik 4193 df-ssetk 4194 df-addc 4379 df-ltfin 4442 |
This theorem is referenced by: ltfinirr 4458 leltfintr 4459 ltfintr 4460 ltfinp1 4463 lefinlteq 4464 ltfintri 4467 ltlefin 4469 tfinltfinlem1 4501 tfinltfin 4502 sfinltfin 4536 |
Copyright terms: Public domain | W3C validator |