New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > df-cok | GIF version |
Description: Define the Kuratowski composition operator. (Contributed by SF, 12-Jan-2015.) |
Ref | Expression |
---|---|
df-cok | ⊢ (A ∘k B) = (( Ins2k A ∩ Ins3k ◡kB) “k V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class A | |
2 | cB | . . 3 class B | |
3 | 1, 2 | ccomk 4181 | . 2 class (A ∘k B) |
4 | 1 | cins2k 4177 | . . . 4 class Ins2k A |
5 | 2 | ccnvk 4176 | . . . . 5 class ◡kB |
6 | 5 | cins3k 4178 | . . . 4 class Ins3k ◡kB |
7 | 4, 6 | cin 3209 | . . 3 class ( Ins2k A ∩ Ins3k ◡kB) |
8 | cvv 2860 | . . 3 class V | |
9 | 7, 8 | cimak 4180 | . 2 class (( Ins2k A ∩ Ins3k ◡kB) “k V) |
10 | 3, 9 | wceq 1642 | 1 wff (A ∘k B) = (( Ins2k A ∩ Ins3k ◡kB) “k V) |
Colors of variables: wff setvar class |
This definition is referenced by: cokeq1 4231 cokeq2 4232 opkelcokg 4262 cokrelk 4285 cokexg 4310 |
Copyright terms: Public domain | W3C validator |