New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > p6eq | GIF version |
Description: Equality theorem for P6 operation. (Contributed by SF, 12-Jan-2015.) |
Ref | Expression |
---|---|
p6eq | ⊢ (A = B → P6 A = P6 B) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseq2 3294 | . . 3 ⊢ (A = B → ((V ×k {{x}}) ⊆ A ↔ (V ×k {{x}}) ⊆ B)) | |
2 | 1 | abbidv 2468 | . 2 ⊢ (A = B → {x ∣ (V ×k {{x}}) ⊆ A} = {x ∣ (V ×k {{x}}) ⊆ B}) |
3 | df-p6 4192 | . 2 ⊢ P6 A = {x ∣ (V ×k {{x}}) ⊆ A} | |
4 | df-p6 4192 | . 2 ⊢ P6 B = {x ∣ (V ×k {{x}}) ⊆ B} | |
5 | 2, 3, 4 | 3eqtr4g 2410 | 1 ⊢ (A = B → P6 A = P6 B) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1642 {cab 2339 Vcvv 2860 ⊆ wss 3258 {csn 3738 ×k cxpk 4175 P6 cp6 4179 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-ss 3260 df-p6 4192 |
This theorem is referenced by: p6eqi 4240 p6eqd 4241 p6exg 4291 |
Copyright terms: Public domain | W3C validator |