| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > porta | GIF version | ||
| Description: Partial ordering as reflexive, transitive, antisymmetric relationship. (Contributed by SF, 12-Mar-2015.) |
| Ref | Expression |
|---|---|
| porta | ⊢ (R Po A ↔ (R Ref A ∧ R Trans A ∧ R Antisym A)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brin 4694 | . . 3 ⊢ (R(( Ref ∩ Trans ) ∩ Antisym )A ↔ (R( Ref ∩ Trans )A ∧ R Antisym A)) | |
| 2 | brin 4694 | . . . 4 ⊢ (R( Ref ∩ Trans )A ↔ (R Ref A ∧ R Trans A)) | |
| 3 | 2 | anbi1i 676 | . . 3 ⊢ ((R( Ref ∩ Trans )A ∧ R Antisym A) ↔ ((R Ref A ∧ R Trans A) ∧ R Antisym A)) |
| 4 | 1, 3 | bitri 240 | . 2 ⊢ (R(( Ref ∩ Trans ) ∩ Antisym )A ↔ ((R Ref A ∧ R Trans A) ∧ R Antisym A)) |
| 5 | df-partial 5903 | . . 3 ⊢ Po = (( Ref ∩ Trans ) ∩ Antisym ) | |
| 6 | 5 | breqi 4646 | . 2 ⊢ (R Po A ↔ R(( Ref ∩ Trans ) ∩ Antisym )A) |
| 7 | df-3an 936 | . 2 ⊢ ((R Ref A ∧ R Trans A ∧ R Antisym A) ↔ ((R Ref A ∧ R Trans A) ∧ R Antisym A)) | |
| 8 | 4, 6, 7 | 3bitr4i 268 | 1 ⊢ (R Po A ↔ (R Ref A ∧ R Trans A ∧ R Antisym A)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 176 ∧ wa 358 ∧ w3a 934 ∩ cin 3209 class class class wbr 4640 Trans ctrans 5889 Ref cref 5890 Antisym cantisym 5891 Po cpartial 5892 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-br 4641 df-partial 5903 |
| This theorem is referenced by: pod 5937 weds 5939 nchoicelem19 6308 |
| Copyright terms: Public domain | W3C validator |