NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  porta GIF version

Theorem porta 5934
Description: Partial ordering as reflexive, transitive, antisymmetric relationship. (Contributed by SF, 12-Mar-2015.)
Assertion
Ref Expression
porta (R Po A ↔ (R Ref A R Trans A R Antisym A))

Proof of Theorem porta
StepHypRef Expression
1 brin 4694 . . 3 (R(( RefTrans ) ∩ Antisym )A ↔ (R( RefTrans )A R Antisym A))
2 brin 4694 . . . 4 (R( RefTrans )A ↔ (R Ref A R Trans A))
32anbi1i 676 . . 3 ((R( RefTrans )A R Antisym A) ↔ ((R Ref A R Trans A) R Antisym A))
41, 3bitri 240 . 2 (R(( RefTrans ) ∩ Antisym )A ↔ ((R Ref A R Trans A) R Antisym A))
5 df-partial 5903 . . 3 Po = (( RefTrans ) ∩ Antisym )
65breqi 4646 . 2 (R Po AR(( RefTrans ) ∩ Antisym )A)
7 df-3an 936 . 2 ((R Ref A R Trans A R Antisym A) ↔ ((R Ref A R Trans A) R Antisym A))
84, 6, 73bitr4i 268 1 (R Po A ↔ (R Ref A R Trans A R Antisym A))
Colors of variables: wff setvar class
Syntax hints:  wb 176   wa 358   w3a 934  cin 3209   class class class wbr 4640   Trans ctrans 5889   Ref cref 5890   Antisym cantisym 5891   Po cpartial 5892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-br 4641  df-partial 5903
This theorem is referenced by:  pod  5937  weds  5939  nchoicelem19  6308
  Copyright terms: Public domain W3C validator