Proof of Theorem nchoicelem8
Step | Hyp | Ref
| Expression |
1 | | ce0lenc1 6240 |
. . . 4
⊢ (M ∈ NC → ((M
↑c 0c) ∈ NC ↔ M ≤c Nc
1c)) |
2 | 1 | notbid 285 |
. . 3
⊢ (M ∈ NC → (¬ (M
↑c 0c) ∈ NC ↔ ¬
M ≤c Nc 1c)) |
3 | 2 | adantl 452 |
. 2
⊢ (( ≤c
We NC ∧ M ∈ NC ) → (¬
(M ↑c
0c) ∈ NC ↔ ¬ M
≤c Nc
1c)) |
4 | | df-we 5907 |
. . . . . . . . . 10
⊢ We = ( Or ∩ Fr ) |
5 | 4 | breqi 4646 |
. . . . . . . . 9
⊢ ( ≤c
We NC ↔
≤c ( Or ∩ Fr ) NC ) |
6 | | brin 4694 |
. . . . . . . . 9
⊢ ( ≤c
( Or ∩ Fr ) NC ↔ ( ≤c Or NC ∧ ≤c Fr
NC )) |
7 | 5, 6 | bitri 240 |
. . . . . . . 8
⊢ ( ≤c
We NC ↔ (
≤c Or NC ∧ ≤c
Fr NC
)) |
8 | | sopc 5935 |
. . . . . . . . . 10
⊢ ( ≤c
Or NC ↔ (
≤c Po NC ∧ ≤c
Connex NC
)) |
9 | 8 | simprbi 450 |
. . . . . . . . 9
⊢ ( ≤c
Or NC →
≤c Connex NC ) |
10 | 9 | adantr 451 |
. . . . . . . 8
⊢ (( ≤c
Or NC ∧ ≤c Fr
NC ) → ≤c Connex NC
) |
11 | 7, 10 | sylbi 187 |
. . . . . . 7
⊢ ( ≤c
We NC →
≤c Connex NC ) |
12 | | simpl 443 |
. . . . . . . 8
⊢ (( ≤c
Connex NC ∧ M ∈ NC ) →
≤c Connex NC ) |
13 | | simpr 447 |
. . . . . . . 8
⊢ (( ≤c
Connex NC ∧ M ∈ NC ) → M ∈ NC ) |
14 | | 1cex 4143 |
. . . . . . . . . 10
⊢
1c ∈
V |
15 | 14 | ncelncsi 6122 |
. . . . . . . . 9
⊢ Nc 1c ∈ NC |
16 | 15 | a1i 10 |
. . . . . . . 8
⊢ (( ≤c
Connex NC ∧ M ∈ NC ) → Nc 1c ∈ NC
) |
17 | 12, 13, 16 | connexd 5932 |
. . . . . . 7
⊢ (( ≤c
Connex NC ∧ M ∈ NC ) →
(M ≤c Nc 1c
∨ Nc 1c
≤c M)) |
18 | 11, 17 | sylan 457 |
. . . . . 6
⊢ (( ≤c
We NC ∧ M ∈ NC ) →
(M ≤c Nc 1c
∨ Nc 1c
≤c M)) |
19 | 18 | ord 366 |
. . . . 5
⊢ (( ≤c
We NC ∧ M ∈ NC ) → (¬
M ≤c Nc 1c → Nc 1c ≤c M)) |
20 | | id 19 |
. . . . . . . 8
⊢ ( Nc 1c = M → Nc
1c = M) |
21 | | nclecid 6198 |
. . . . . . . . 9
⊢ ( Nc 1c ∈ NC → Nc 1c ≤c Nc 1c) |
22 | 15, 21 | ax-mp 5 |
. . . . . . . 8
⊢ Nc 1c ≤c Nc 1c |
23 | 20, 22 | syl6eqbrr 4678 |
. . . . . . 7
⊢ ( Nc 1c = M → M
≤c Nc
1c) |
24 | 23 | necon3bi 2558 |
. . . . . 6
⊢ (¬ M ≤c Nc
1c → Nc
1c ≠ M) |
25 | 24 | a1i 10 |
. . . . 5
⊢ (( ≤c
We NC ∧ M ∈ NC ) → (¬
M ≤c Nc 1c → Nc 1c ≠ M)) |
26 | 19, 25 | jcad 519 |
. . . 4
⊢ (( ≤c
We NC ∧ M ∈ NC ) → (¬
M ≤c Nc 1c → ( Nc 1c ≤c M ∧ Nc 1c ≠ M))) |
27 | 7 | simplbi 446 |
. . . . . . . . . . 11
⊢ ( ≤c
We NC →
≤c Or NC ) |
28 | 8 | simplbi 446 |
. . . . . . . . . . 11
⊢ ( ≤c
Or NC →
≤c Po NC ) |
29 | | df-partial 5903 |
. . . . . . . . . . . . . 14
⊢ Po = (( Ref ∩ Trans ) ∩ Antisym
) |
30 | 29 | breqi 4646 |
. . . . . . . . . . . . 13
⊢ ( ≤c
Po NC ↔
≤c (( Ref ∩ Trans ) ∩ Antisym )
NC ) |
31 | | brin 4694 |
. . . . . . . . . . . . 13
⊢ ( ≤c
(( Ref ∩ Trans )
∩ Antisym ) NC
↔ ( ≤c ( Ref ∩ Trans ) NC ∧ ≤c Antisym NC
)) |
32 | 30, 31 | bitri 240 |
. . . . . . . . . . . 12
⊢ ( ≤c
Po NC ↔ (
≤c ( Ref ∩ Trans ) NC ∧ ≤c Antisym NC
)) |
33 | 32 | simprbi 450 |
. . . . . . . . . . 11
⊢ ( ≤c
Po NC →
≤c Antisym NC ) |
34 | 27, 28, 33 | 3syl 18 |
. . . . . . . . . 10
⊢ ( ≤c
We NC →
≤c Antisym NC ) |
35 | 34 | adantr 451 |
. . . . . . . . 9
⊢ (( ≤c
We NC ∧ M ∈ NC ) →
≤c Antisym NC ) |
36 | 35 | adantr 451 |
. . . . . . . 8
⊢ (((
≤c We NC ∧ M ∈ NC ) ∧ ( Nc 1c ≤c M ∧ M ≤c Nc
1c)) → ≤c Antisym NC
) |
37 | 15 | a1i 10 |
. . . . . . . 8
⊢ (((
≤c We NC ∧ M ∈ NC ) ∧ ( Nc 1c ≤c M ∧ M ≤c Nc
1c)) → Nc
1c ∈ NC ) |
38 | | simplr 731 |
. . . . . . . 8
⊢ (((
≤c We NC ∧ M ∈ NC ) ∧ ( Nc 1c ≤c M ∧ M ≤c Nc
1c)) → M ∈ NC
) |
39 | | simprl 732 |
. . . . . . . 8
⊢ (((
≤c We NC ∧ M ∈ NC ) ∧ ( Nc 1c ≤c M ∧ M ≤c Nc
1c)) → Nc
1c ≤c M) |
40 | | simprr 733 |
. . . . . . . 8
⊢ (((
≤c We NC ∧ M ∈ NC ) ∧ ( Nc 1c ≤c M ∧ M ≤c Nc
1c)) → M
≤c Nc
1c) |
41 | 36, 37, 38, 39, 40 | antid 5930 |
. . . . . . 7
⊢ (((
≤c We NC ∧ M ∈ NC ) ∧ ( Nc 1c ≤c M ∧ M ≤c Nc
1c)) → Nc
1c = M) |
42 | 41 | expr 598 |
. . . . . 6
⊢ (((
≤c We NC ∧ M ∈ NC ) ∧ Nc 1c ≤c M) → (M
≤c Nc 1c →
Nc 1c = M)) |
43 | 42 | necon3ad 2553 |
. . . . 5
⊢ (((
≤c We NC ∧ M ∈ NC ) ∧ Nc 1c ≤c M) → ( Nc
1c ≠ M → ¬
M ≤c Nc 1c)) |
44 | 43 | expimpd 586 |
. . . 4
⊢ (( ≤c
We NC ∧ M ∈ NC ) → (( Nc 1c ≤c M ∧ Nc 1c ≠ M) → ¬ M ≤c Nc
1c)) |
45 | 26, 44 | impbid 183 |
. . 3
⊢ (( ≤c
We NC ∧ M ∈ NC ) → (¬
M ≤c Nc 1c ↔ ( Nc 1c ≤c M ∧ Nc 1c ≠ M))) |
46 | | brltc 6115 |
. . 3
⊢ ( Nc 1c <c M ↔ ( Nc
1c ≤c M
∧ Nc
1c ≠ M)) |
47 | 45, 46 | syl6bbr 254 |
. 2
⊢ (( ≤c
We NC ∧ M ∈ NC ) → (¬
M ≤c Nc 1c ↔ Nc 1c <c M)) |
48 | 3, 47 | bitrd 244 |
1
⊢ (( ≤c
We NC ∧ M ∈ NC ) → (¬
(M ↑c
0c) ∈ NC ↔ Nc
1c <c M)) |