New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > df-pm | GIF version |
Description: Define the partial mapping operation. A partial function from B to A is a function from a subset of B to A. The set of all partial functions from B to A is written (A ↑pm B) (see pmvalg 6011). A notation for this operation apparently does not appear in the literature. We use ↑pm to distinguish it from the less general set exponentiation operation ↑m (df-map 6002) . See mapsspm 6022 for its relationship to set exponentiation. (Contributed by NM, 15-Nov-2007.) |
Ref | Expression |
---|---|
df-pm | ⊢ ↑pm = (x ∈ V, y ∈ V ↦ {f ∈ ℘(y × x) ∣ Fun f}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cpm 6001 | . 2 class ↑pm | |
2 | vx | . . 3 setvar x | |
3 | vy | . . 3 setvar y | |
4 | cvv 2860 | . . 3 class V | |
5 | vf | . . . . . 6 setvar f | |
6 | 5 | cv 1641 | . . . . 5 class f |
7 | 6 | wfun 4776 | . . . 4 wff Fun f |
8 | 3 | cv 1641 | . . . . . 6 class y |
9 | 2 | cv 1641 | . . . . . 6 class x |
10 | 8, 9 | cxp 4771 | . . . . 5 class (y × x) |
11 | 10 | cpw 3723 | . . . 4 class ℘(y × x) |
12 | 7, 5, 11 | crab 2619 | . . 3 class {f ∈ ℘(y × x) ∣ Fun f} |
13 | 2, 3, 4, 4, 12 | cmpt2 5654 | . 2 class (x ∈ V, y ∈ V ↦ {f ∈ ℘(y × x) ∣ Fun f}) |
14 | 1, 13 | wceq 1642 | 1 wff ↑pm = (x ∈ V, y ∈ V ↦ {f ∈ ℘(y × x) ∣ Fun f}) |
Colors of variables: wff setvar class |
This definition is referenced by: fnpm 6009 pmvalg 6011 |
Copyright terms: Public domain | W3C validator |