NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  pmvalg GIF version

Theorem pmvalg 6010
Description: The value of the partial mapping operation. (Apm B) is the set of all partial functions that map from B to A. (Contributed by set.mm contributors, 15-Nov-2007.) (Revised by set.mm contributors, 8-Sep-2013.)
Assertion
Ref Expression
pmvalg ((A C B D) → (Apm B) = {f (B × A) Fun f})
Distinct variable groups:   A,f   B,f
Allowed substitution hints:   C(f)   D(f)

Proof of Theorem pmvalg
Dummy variables x y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 2867 . 2 (A CA V)
2 elex 2867 . 2 (B DB V)
3 df-rab 2623 . . . . 5 {f (B × A) Fun f} = {f (f (B × A) Fun f)}
4 ancom 437 . . . . . . 7 ((f (B × A) Fun f) ↔ (Fun f f (B × A)))
5 df-pw 3724 . . . . . . . . 9 (B × A) = {f f (B × A)}
65abeq2i 2460 . . . . . . . 8 (f (B × A) ↔ f (B × A))
76anbi2i 675 . . . . . . 7 ((Fun f f (B × A)) ↔ (Fun f f (B × A)))
84, 7bitri 240 . . . . . 6 ((f (B × A) Fun f) ↔ (Fun f f (B × A)))
98abbii 2465 . . . . 5 {f (f (B × A) Fun f)} = {f (Fun f f (B × A))}
103, 9eqtri 2373 . . . 4 {f (B × A) Fun f} = {f (Fun f f (B × A))}
11 pmex 6005 . . . . 5 ((B V A V) → {f (Fun f f (B × A))} V)
1211ancoms 439 . . . 4 ((A V B V) → {f (Fun f f (B × A))} V)
1310, 12syl5eqel 2437 . . 3 ((A V B V) → {f (B × A) Fun f} V)
14 xpeq2 4799 . . . . . 6 (x = A → (y × x) = (y × A))
1514pweqd 3727 . . . . 5 (x = A(y × x) = (y × A))
16 biidd 228 . . . . 5 (x = A → (Fun f ↔ Fun f))
1715, 16rabeqbidv 2854 . . . 4 (x = A → {f (y × x) Fun f} = {f (y × A) Fun f})
18 xpeq1 4798 . . . . . 6 (y = B → (y × A) = (B × A))
1918pweqd 3727 . . . . 5 (y = B(y × A) = (B × A))
20 biidd 228 . . . . 5 (y = B → (Fun f ↔ Fun f))
2119, 20rabeqbidv 2854 . . . 4 (y = B → {f (y × A) Fun f} = {f (B × A) Fun f})
22 df-pm 6002 . . . 4 pm = (x V, y V {f (y × x) Fun f})
2317, 21, 22ovmpt2g 5715 . . 3 ((A V B V {f (B × A) Fun f} V) → (Apm B) = {f (B × A) Fun f})
2413, 23mpd3an3 1278 . 2 ((A V B V) → (Apm B) = {f (B × A) Fun f})
251, 2, 24syl2an 463 1 ((A C B D) → (Apm B) = {f (B × A) Fun f})
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358   = wceq 1642   wcel 1710  {cab 2339  {crab 2618  Vcvv 2859   wss 3257  cpw 3722   × cxp 4770  Fun wfun 4775  (class class class)co 5525  pm cpm 6000
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4078  ax-xp 4079  ax-cnv 4080  ax-1c 4081  ax-sset 4082  ax-si 4083  ax-ins2 4084  ax-ins3 4085  ax-typlower 4086  ax-sn 4087
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2478  df-ne 2518  df-ral 2619  df-rex 2620  df-reu 2621  df-rmo 2622  df-rab 2623  df-v 2861  df-sbc 3047  df-nin 3211  df-compl 3212  df-in 3213  df-un 3214  df-dif 3215  df-symdif 3216  df-ss 3259  df-pss 3261  df-nul 3551  df-if 3663  df-pw 3724  df-sn 3741  df-pr 3742  df-uni 3892  df-int 3927  df-opk 4058  df-1c 4136  df-pw1 4137  df-uni1 4138  df-xpk 4185  df-cnvk 4186  df-ins2k 4187  df-ins3k 4188  df-imak 4189  df-cok 4190  df-p6 4191  df-sik 4192  df-ssetk 4193  df-imagek 4194  df-idk 4195  df-iota 4339  df-0c 4377  df-addc 4378  df-nnc 4379  df-fin 4380  df-lefin 4440  df-ltfin 4441  df-ncfin 4442  df-tfin 4443  df-evenfin 4444  df-oddfin 4445  df-sfin 4446  df-spfin 4447  df-phi 4565  df-op 4566  df-proj1 4567  df-proj2 4568  df-opab 4623  df-br 4640  df-1st 4723  df-swap 4724  df-sset 4725  df-co 4726  df-ima 4727  df-si 4728  df-id 4767  df-xp 4784  df-cnv 4785  df-rn 4786  df-dm 4787  df-fun 4789  df-fv 4795  df-2nd 4797  df-ov 5526  df-oprab 5528  df-mpt2 5654  df-txp 5736  df-ins2 5750  df-ins3 5752  df-ins4 5756  df-si3 5758  df-funs 5760  df-pm 6002
This theorem is referenced by:  elpmg  6013  mapsspm  6021
  Copyright terms: Public domain W3C validator