New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > pmvalg | GIF version |
Description: The value of the partial mapping operation. (A ↑pm B) is the set of all partial functions that map from B to A. (Contributed by set.mm contributors, 15-Nov-2007.) (Revised by set.mm contributors, 8-Sep-2013.) |
Ref | Expression |
---|---|
pmvalg | ⊢ ((A ∈ C ∧ B ∈ D) → (A ↑pm B) = {f ∈ ℘(B × A) ∣ Fun f}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2868 | . 2 ⊢ (A ∈ C → A ∈ V) | |
2 | elex 2868 | . 2 ⊢ (B ∈ D → B ∈ V) | |
3 | df-rab 2624 | . . . . 5 ⊢ {f ∈ ℘(B × A) ∣ Fun f} = {f ∣ (f ∈ ℘(B × A) ∧ Fun f)} | |
4 | ancom 437 | . . . . . . 7 ⊢ ((f ∈ ℘(B × A) ∧ Fun f) ↔ (Fun f ∧ f ∈ ℘(B × A))) | |
5 | df-pw 3725 | . . . . . . . . 9 ⊢ ℘(B × A) = {f ∣ f ⊆ (B × A)} | |
6 | 5 | abeq2i 2461 | . . . . . . . 8 ⊢ (f ∈ ℘(B × A) ↔ f ⊆ (B × A)) |
7 | 6 | anbi2i 675 | . . . . . . 7 ⊢ ((Fun f ∧ f ∈ ℘(B × A)) ↔ (Fun f ∧ f ⊆ (B × A))) |
8 | 4, 7 | bitri 240 | . . . . . 6 ⊢ ((f ∈ ℘(B × A) ∧ Fun f) ↔ (Fun f ∧ f ⊆ (B × A))) |
9 | 8 | abbii 2466 | . . . . 5 ⊢ {f ∣ (f ∈ ℘(B × A) ∧ Fun f)} = {f ∣ (Fun f ∧ f ⊆ (B × A))} |
10 | 3, 9 | eqtri 2373 | . . . 4 ⊢ {f ∈ ℘(B × A) ∣ Fun f} = {f ∣ (Fun f ∧ f ⊆ (B × A))} |
11 | pmex 6006 | . . . . 5 ⊢ ((B ∈ V ∧ A ∈ V) → {f ∣ (Fun f ∧ f ⊆ (B × A))} ∈ V) | |
12 | 11 | ancoms 439 | . . . 4 ⊢ ((A ∈ V ∧ B ∈ V) → {f ∣ (Fun f ∧ f ⊆ (B × A))} ∈ V) |
13 | 10, 12 | syl5eqel 2437 | . . 3 ⊢ ((A ∈ V ∧ B ∈ V) → {f ∈ ℘(B × A) ∣ Fun f} ∈ V) |
14 | xpeq2 4800 | . . . . . 6 ⊢ (x = A → (y × x) = (y × A)) | |
15 | 14 | pweqd 3728 | . . . . 5 ⊢ (x = A → ℘(y × x) = ℘(y × A)) |
16 | biidd 228 | . . . . 5 ⊢ (x = A → (Fun f ↔ Fun f)) | |
17 | 15, 16 | rabeqbidv 2855 | . . . 4 ⊢ (x = A → {f ∈ ℘(y × x) ∣ Fun f} = {f ∈ ℘(y × A) ∣ Fun f}) |
18 | xpeq1 4799 | . . . . . 6 ⊢ (y = B → (y × A) = (B × A)) | |
19 | 18 | pweqd 3728 | . . . . 5 ⊢ (y = B → ℘(y × A) = ℘(B × A)) |
20 | biidd 228 | . . . . 5 ⊢ (y = B → (Fun f ↔ Fun f)) | |
21 | 19, 20 | rabeqbidv 2855 | . . . 4 ⊢ (y = B → {f ∈ ℘(y × A) ∣ Fun f} = {f ∈ ℘(B × A) ∣ Fun f}) |
22 | df-pm 6003 | . . . 4 ⊢ ↑pm = (x ∈ V, y ∈ V ↦ {f ∈ ℘(y × x) ∣ Fun f}) | |
23 | 17, 21, 22 | ovmpt2g 5716 | . . 3 ⊢ ((A ∈ V ∧ B ∈ V ∧ {f ∈ ℘(B × A) ∣ Fun f} ∈ V) → (A ↑pm B) = {f ∈ ℘(B × A) ∣ Fun f}) |
24 | 13, 23 | mpd3an3 1278 | . 2 ⊢ ((A ∈ V ∧ B ∈ V) → (A ↑pm B) = {f ∈ ℘(B × A) ∣ Fun f}) |
25 | 1, 2, 24 | syl2an 463 | 1 ⊢ ((A ∈ C ∧ B ∈ D) → (A ↑pm B) = {f ∈ ℘(B × A) ∣ Fun f}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 = wceq 1642 ∈ wcel 1710 {cab 2339 {crab 2619 Vcvv 2860 ⊆ wss 3258 ℘cpw 3723 × cxp 4771 Fun wfun 4776 (class class class)co 5526 ↑pm cpm 6001 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-evenfin 4445 df-oddfin 4446 df-sfin 4447 df-spfin 4448 df-phi 4566 df-op 4567 df-proj1 4568 df-proj2 4569 df-opab 4624 df-br 4641 df-1st 4724 df-swap 4725 df-sset 4726 df-co 4727 df-ima 4728 df-si 4729 df-id 4768 df-xp 4785 df-cnv 4786 df-rn 4787 df-dm 4788 df-fun 4790 df-fv 4796 df-2nd 4798 df-ov 5527 df-oprab 5529 df-mpt2 5655 df-txp 5737 df-ins2 5751 df-ins3 5753 df-ins4 5757 df-si3 5759 df-funs 5761 df-pm 6003 |
This theorem is referenced by: elpmg 6014 mapsspm 6022 |
Copyright terms: Public domain | W3C validator |