New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > fnpm | GIF version |
Description: Partial function exponentiation has a universal domain. (Contributed by set.mm contributors, 14-Nov-2013.) (Revised by Scott Fenton, 19-Apr-2019.) |
Ref | Expression |
---|---|
fnpm | ⊢ ↑pm Fn V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pm 6003 | . . 3 ⊢ ↑pm = (x ∈ V, y ∈ V ↦ {f ∈ ℘(y × x) ∣ Fun f}) | |
2 | elin 3220 | . . . . . 6 ⊢ (f ∈ (℘(y × x) ∩ Funs ) ↔ (f ∈ ℘(y × x) ∧ f ∈ Funs )) | |
3 | 2 | abbi2i 2465 | . . . . 5 ⊢ (℘(y × x) ∩ Funs ) = {f ∣ (f ∈ ℘(y × x) ∧ f ∈ Funs )} |
4 | df-rab 2624 | . . . . 5 ⊢ {f ∈ ℘(y × x) ∣ f ∈ Funs } = {f ∣ (f ∈ ℘(y × x) ∧ f ∈ Funs )} | |
5 | vex 2863 | . . . . . . . 8 ⊢ f ∈ V | |
6 | 5 | elfuns 5830 | . . . . . . 7 ⊢ (f ∈ Funs ↔ Fun f) |
7 | 6 | rgenw 2682 | . . . . . 6 ⊢ ∀f ∈ ℘ (y × x)(f ∈ Funs ↔ Fun f) |
8 | rabbi 2790 | . . . . . 6 ⊢ (∀f ∈ ℘ (y × x)(f ∈ Funs ↔ Fun f) ↔ {f ∈ ℘(y × x) ∣ f ∈ Funs } = {f ∈ ℘(y × x) ∣ Fun f}) | |
9 | 7, 8 | mpbi 199 | . . . . 5 ⊢ {f ∈ ℘(y × x) ∣ f ∈ Funs } = {f ∈ ℘(y × x) ∣ Fun f} |
10 | 3, 4, 9 | 3eqtr2i 2379 | . . . 4 ⊢ (℘(y × x) ∩ Funs ) = {f ∈ ℘(y × x) ∣ Fun f} |
11 | vex 2863 | . . . . . . 7 ⊢ y ∈ V | |
12 | vex 2863 | . . . . . . 7 ⊢ x ∈ V | |
13 | 11, 12 | xpex 5116 | . . . . . 6 ⊢ (y × x) ∈ V |
14 | 13 | pwex 4330 | . . . . 5 ⊢ ℘(y × x) ∈ V |
15 | funsex 5829 | . . . . 5 ⊢ Funs ∈ V | |
16 | 14, 15 | inex 4106 | . . . 4 ⊢ (℘(y × x) ∩ Funs ) ∈ V |
17 | 10, 16 | eqeltrri 2424 | . . 3 ⊢ {f ∈ ℘(y × x) ∣ Fun f} ∈ V |
18 | 1, 17 | fnmpt2i 5734 | . 2 ⊢ ↑pm Fn (V × V) |
19 | xpvv 4844 | . . 3 ⊢ (V × V) = V | |
20 | 19 | fneq2i 5180 | . 2 ⊢ ( ↑pm Fn (V × V) ↔ ↑pm Fn V) |
21 | 18, 20 | mpbi 199 | 1 ⊢ ↑pm Fn V |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∧ wa 358 = wceq 1642 ∈ wcel 1710 {cab 2339 ∀wral 2615 {crab 2619 Vcvv 2860 ∩ cin 3209 ℘cpw 3723 × cxp 4771 Fun wfun 4776 Fn wfn 4777 Funs cfuns 5760 ↑pm cpm 6001 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-csb 3138 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-iun 3972 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-evenfin 4445 df-oddfin 4446 df-sfin 4447 df-spfin 4448 df-phi 4566 df-op 4567 df-proj1 4568 df-proj2 4569 df-opab 4624 df-br 4641 df-1st 4724 df-swap 4725 df-sset 4726 df-co 4727 df-ima 4728 df-si 4729 df-id 4768 df-xp 4785 df-cnv 4786 df-rn 4787 df-dm 4788 df-res 4789 df-fun 4790 df-fn 4791 df-f 4792 df-fo 4794 df-fv 4796 df-2nd 4798 df-oprab 5529 df-mpt 5653 df-mpt2 5655 df-txp 5737 df-ins2 5751 df-ins3 5753 df-ins4 5757 df-si3 5759 df-funs 5761 df-pm 6003 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |