Step | Hyp | Ref
| Expression |
1 | | elin 3220 |
. . . . . 6
⊢ (f ∈ ( Funs ∩ (◡Image1st “ {A})) ↔ (f
∈ Funs ∧ f ∈ (◡Image1st “ {A}))) |
2 | | vex 2863 |
. . . . . . . 8
⊢ f ∈
V |
3 | 2 | elfuns 5830 |
. . . . . . 7
⊢ (f ∈ Funs ↔ Fun f) |
4 | | elimasn 5020 |
. . . . . . . 8
⊢ (f ∈ (◡Image1st “ {A}) ↔ 〈A, f〉 ∈ ◡Image1st ) |
5 | | df-br 4641 |
. . . . . . . 8
⊢ (A◡Image1st f ↔ 〈A, f〉 ∈ ◡Image1st ) |
6 | | brcnv 4893 |
. . . . . . . . 9
⊢ (A◡Image1st f ↔ fImage1st A) |
7 | | mapexi.1 |
. . . . . . . . . . 11
⊢ A ∈
V |
8 | 2, 7 | brimage 5794 |
. . . . . . . . . 10
⊢ (fImage1st A ↔ A =
(1st “ f)) |
9 | | dfdm4 5508 |
. . . . . . . . . . 11
⊢ dom f = (1st “ f) |
10 | 9 | eqeq2i 2363 |
. . . . . . . . . 10
⊢ (A = dom f ↔
A = (1st “ f)) |
11 | | eqcom 2355 |
. . . . . . . . . 10
⊢ (A = dom f ↔
dom f = A) |
12 | 8, 10, 11 | 3bitr2i 264 |
. . . . . . . . 9
⊢ (fImage1st A ↔ dom f =
A) |
13 | 6, 12 | bitri 240 |
. . . . . . . 8
⊢ (A◡Image1st f ↔ dom f =
A) |
14 | 4, 5, 13 | 3bitr2i 264 |
. . . . . . 7
⊢ (f ∈ (◡Image1st “ {A}) ↔ dom f
= A) |
15 | 3, 14 | anbi12i 678 |
. . . . . 6
⊢ ((f ∈ Funs ∧ f ∈ (◡Image1st “ {A})) ↔ (Fun f ∧ dom f = A)) |
16 | 1, 15 | bitri 240 |
. . . . 5
⊢ (f ∈ ( Funs ∩ (◡Image1st “ {A})) ↔ (Fun f ∧ dom f = A)) |
17 | | vex 2863 |
. . . . . . . . . 10
⊢ x ∈
V |
18 | 2, 17 | brimage 5794 |
. . . . . . . . 9
⊢ (fImage2nd x ↔ x =
(2nd “ f)) |
19 | | brcnv 4893 |
. . . . . . . . 9
⊢ (x◡Image2nd f ↔ fImage2nd x) |
20 | | dfrn5 5509 |
. . . . . . . . . 10
⊢ ran f = (2nd “ f) |
21 | 20 | eqeq2i 2363 |
. . . . . . . . 9
⊢ (x = ran f ↔
x = (2nd “ f)) |
22 | 18, 19, 21 | 3bitr4i 268 |
. . . . . . . 8
⊢ (x◡Image2nd f ↔ x = ran
f) |
23 | 22 | rexbii 2640 |
. . . . . . 7
⊢ (∃x ∈ ℘ Bx◡Image2nd f ↔ ∃x ∈ ℘ Bx = ran
f) |
24 | | elima 4755 |
. . . . . . 7
⊢ (f ∈ (◡Image2nd “ ℘B) ↔
∃x ∈ ℘ Bx◡Image2nd f) |
25 | | risset 2662 |
. . . . . . 7
⊢ (ran f ∈ ℘B ↔
∃x ∈ ℘ Bx = ran
f) |
26 | 23, 24, 25 | 3bitr4i 268 |
. . . . . 6
⊢ (f ∈ (◡Image2nd “ ℘B) ↔
ran f ∈
℘B) |
27 | 2 | rnex 5108 |
. . . . . . 7
⊢ ran f ∈
V |
28 | 27 | elpw 3729 |
. . . . . 6
⊢ (ran f ∈ ℘B ↔ ran
f ⊆
B) |
29 | 26, 28 | bitri 240 |
. . . . 5
⊢ (f ∈ (◡Image2nd “ ℘B) ↔
ran f ⊆
B) |
30 | 16, 29 | anbi12i 678 |
. . . 4
⊢ ((f ∈ ( Funs ∩ (◡Image1st “ {A})) ∧ f ∈ (◡Image2nd “ ℘B)) ↔
((Fun f ∧
dom f = A) ∧ ran f ⊆ B)) |
31 | | elin 3220 |
. . . 4
⊢ (f ∈ (( Funs ∩ (◡Image1st “ {A})) ∩ (◡Image2nd “ ℘B)) ↔
(f ∈ (
Funs ∩ (◡Image1st “ {A})) ∧ f ∈ (◡Image2nd “ ℘B))) |
32 | | df-f 4792 |
. . . . 5
⊢ (f:A–→B
↔ (f Fn A ∧ ran f ⊆ B)) |
33 | | df-fn 4791 |
. . . . . 6
⊢ (f Fn A ↔
(Fun f ∧
dom f = A)) |
34 | 33 | anbi1i 676 |
. . . . 5
⊢ ((f Fn A ∧ ran f ⊆ B) ↔
((Fun f ∧
dom f = A) ∧ ran f ⊆ B)) |
35 | 32, 34 | bitri 240 |
. . . 4
⊢ (f:A–→B
↔ ((Fun f ∧ dom f =
A) ∧ ran
f ⊆
B)) |
36 | 30, 31, 35 | 3bitr4i 268 |
. . 3
⊢ (f ∈ (( Funs ∩ (◡Image1st “ {A})) ∩ (◡Image2nd “ ℘B)) ↔
f:A–→B) |
37 | 36 | abbi2i 2465 |
. 2
⊢ (( Funs ∩ (◡Image1st “ {A})) ∩ (◡Image2nd “ ℘B)) =
{f ∣
f:A–→B} |
38 | | funsex 5829 |
. . . 4
⊢ Funs ∈
V |
39 | | 1stex 4740 |
. . . . . . 7
⊢ 1st
∈ V |
40 | 39 | imageex 5802 |
. . . . . 6
⊢ Image1st
∈ V |
41 | 40 | cnvex 5103 |
. . . . 5
⊢ ◡Image1st ∈ V |
42 | | snex 4112 |
. . . . 5
⊢ {A} ∈
V |
43 | 41, 42 | imaex 4748 |
. . . 4
⊢ (◡Image1st “ {A}) ∈
V |
44 | 38, 43 | inex 4106 |
. . 3
⊢ ( Funs ∩ (◡Image1st “ {A})) ∈
V |
45 | | 2ndex 5113 |
. . . . . 6
⊢ 2nd
∈ V |
46 | 45 | imageex 5802 |
. . . . 5
⊢ Image2nd
∈ V |
47 | 46 | cnvex 5103 |
. . . 4
⊢ ◡Image2nd ∈ V |
48 | | mapexi.2 |
. . . . 5
⊢ B ∈
V |
49 | 48 | pwex 4330 |
. . . 4
⊢ ℘B ∈ V |
50 | 47, 49 | imaex 4748 |
. . 3
⊢ (◡Image2nd “ ℘B) ∈ V |
51 | 44, 50 | inex 4106 |
. 2
⊢ (( Funs ∩ (◡Image1st “ {A})) ∩ (◡Image2nd “ ℘B)) ∈ V |
52 | 37, 51 | eqeltrri 2424 |
1
⊢ {f ∣ f:A–→B}
∈ V |