Detailed syntax breakdown of Definition df-si
| Step | Hyp | Ref
| Expression |
| 1 | | cA |
. . 3
class A |
| 2 | 1 | csi 4721 |
. 2
class SI
A |
| 3 | | vx |
. . . . . . . 8
setvar x |
| 4 | 3 | cv 1641 |
. . . . . . 7
class x |
| 5 | | vz |
. . . . . . . . 9
setvar z |
| 6 | 5 | cv 1641 |
. . . . . . . 8
class z |
| 7 | 6 | csn 3738 |
. . . . . . 7
class {z} |
| 8 | 4, 7 | wceq 1642 |
. . . . . 6
wff x =
{z} |
| 9 | | vy |
. . . . . . . 8
setvar y |
| 10 | 9 | cv 1641 |
. . . . . . 7
class y |
| 11 | | vw |
. . . . . . . . 9
setvar w |
| 12 | 11 | cv 1641 |
. . . . . . . 8
class w |
| 13 | 12 | csn 3738 |
. . . . . . 7
class {w} |
| 14 | 10, 13 | wceq 1642 |
. . . . . 6
wff y =
{w} |
| 15 | 6, 12, 1 | wbr 4640 |
. . . . . 6
wff zAw |
| 16 | 8, 14, 15 | w3a 934 |
. . . . 5
wff (x
= {z} ∧
y = {w}
∧ zAw) |
| 17 | 16, 11 | wex 1541 |
. . . 4
wff ∃w(x = {z} ∧ y = {w} ∧ zAw) |
| 18 | 17, 5 | wex 1541 |
. . 3
wff ∃z∃w(x = {z} ∧ y = {w} ∧ zAw) |
| 19 | 18, 3, 9 | copab 4623 |
. 2
class {〈x, y〉 ∣ ∃z∃w(x = {z} ∧ y = {w} ∧ zAw)} |
| 20 | 2, 19 | wceq 1642 |
1
wff SI
A = {〈x, y〉 ∣ ∃z∃w(x = {z} ∧ y = {w} ∧ zAw)} |