Detailed syntax breakdown of Definition df-si
| Step | Hyp | Ref
 | Expression | 
| 1 |   | cA | 
. . 3
class A | 
| 2 | 1 | csi 4721 | 
. 2
class  SI
A | 
| 3 |   | vx | 
. . . . . . . 8
setvar x | 
| 4 | 3 | cv 1641 | 
. . . . . . 7
class x | 
| 5 |   | vz | 
. . . . . . . . 9
setvar z | 
| 6 | 5 | cv 1641 | 
. . . . . . . 8
class z | 
| 7 | 6 | csn 3738 | 
. . . . . . 7
class {z} | 
| 8 | 4, 7 | wceq 1642 | 
. . . . . 6
wff x =
{z} | 
| 9 |   | vy | 
. . . . . . . 8
setvar y | 
| 10 | 9 | cv 1641 | 
. . . . . . 7
class y | 
| 11 |   | vw | 
. . . . . . . . 9
setvar w | 
| 12 | 11 | cv 1641 | 
. . . . . . . 8
class w | 
| 13 | 12 | csn 3738 | 
. . . . . . 7
class {w} | 
| 14 | 10, 13 | wceq 1642 | 
. . . . . 6
wff y =
{w} | 
| 15 | 6, 12, 1 | wbr 4640 | 
. . . . . 6
wff zAw | 
| 16 | 8, 14, 15 | w3a 934 | 
. . . . 5
wff (x
= {z} ∧
y = {w}
∧ zAw) | 
| 17 | 16, 11 | wex 1541 | 
. . . 4
wff ∃w(x = {z} ∧ y = {w} ∧ zAw) | 
| 18 | 17, 5 | wex 1541 | 
. . 3
wff ∃z∃w(x = {z} ∧ y = {w} ∧ zAw) | 
| 19 | 18, 3, 9 | copab 4623 | 
. 2
class {〈x, y〉 ∣ ∃z∃w(x = {z} ∧ y = {w} ∧ zAw)} | 
| 20 | 2, 19 | wceq 1642 | 
1
wff  SI
A = {〈x, y〉 ∣ ∃z∃w(x = {z} ∧ y = {w} ∧ zAw)} |