NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  el1st GIF version

Theorem el1st 4730
Description: Membership in 1st. (Contributed by SF, 5-Jan-2015.)
Assertion
Ref Expression
el1st (A 1stxy A = x, y, x)
Distinct variable group:   x,A,y

Proof of Theorem el1st
Dummy variable z is distinct from all other variables.
StepHypRef Expression
1 df-1st 4724 . . . 4 1st = {z, x y z = x, y}
21eleq2i 2417 . . 3 (A 1stA {z, x y z = x, y})
3 elopab 4697 . . 3 (A {z, x y z = x, y} ↔ zx(A = z, x y z = x, y))
42, 3bitri 240 . 2 (A 1stzx(A = z, x y z = x, y))
5 excom 1741 . . 3 (zx(A = z, x y z = x, y) ↔ xz(A = z, x y z = x, y))
6 excom 1741 . . . . 5 (yz(A = z, x z = x, y) ↔ zy(A = z, x z = x, y))
7 exancom 1586 . . . . . . 7 (z(A = z, x z = x, y) ↔ z(z = x, y A = z, x))
8 vex 2863 . . . . . . . . 9 x V
9 vex 2863 . . . . . . . . 9 y V
108, 9opex 4589 . . . . . . . 8 x, y V
11 opeq1 4579 . . . . . . . . 9 (z = x, yz, x = x, y, x)
1211eqeq2d 2364 . . . . . . . 8 (z = x, y → (A = z, xA = x, y, x))
1310, 12ceqsexv 2895 . . . . . . 7 (z(z = x, y A = z, x) ↔ A = x, y, x)
147, 13bitri 240 . . . . . 6 (z(A = z, x z = x, y) ↔ A = x, y, x)
1514exbii 1582 . . . . 5 (yz(A = z, x z = x, y) ↔ y A = x, y, x)
16 exdistr 1906 . . . . 5 (zy(A = z, x z = x, y) ↔ z(A = z, x y z = x, y))
176, 15, 163bitr3ri 267 . . . 4 (z(A = z, x y z = x, y) ↔ y A = x, y, x)
1817exbii 1582 . . 3 (xz(A = z, x y z = x, y) ↔ xy A = x, y, x)
195, 18bitri 240 . 2 (zx(A = z, x y z = x, y) ↔ xy A = x, y, x)
204, 19bitri 240 1 (A 1stxy A = x, y, x)
Colors of variables: wff setvar class
Syntax hints:  wb 176   wa 358  wex 1541   = wceq 1642   wcel 1710  cop 4562  {copab 4623  1st c1st 4718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-addc 4379  df-nnc 4380  df-phi 4566  df-op 4567  df-opab 4624  df-1st 4724
This theorem is referenced by:  br1stg  4731
  Copyright terms: Public domain W3C validator