![]() |
New Foundations Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > NFE Home > Th. List > el1st | GIF version |
Description: Membership in 1st. (Contributed by SF, 5-Jan-2015.) |
Ref | Expression |
---|---|
el1st | ⊢ (A ∈ 1st ↔ ∃x∃y A = 〈〈x, y〉, x〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-1st 4723 | . . . 4 ⊢ 1st = {〈z, x〉 ∣ ∃y z = 〈x, y〉} | |
2 | 1 | eleq2i 2417 | . . 3 ⊢ (A ∈ 1st ↔ A ∈ {〈z, x〉 ∣ ∃y z = 〈x, y〉}) |
3 | elopab 4696 | . . 3 ⊢ (A ∈ {〈z, x〉 ∣ ∃y z = 〈x, y〉} ↔ ∃z∃x(A = 〈z, x〉 ∧ ∃y z = 〈x, y〉)) | |
4 | 2, 3 | bitri 240 | . 2 ⊢ (A ∈ 1st ↔ ∃z∃x(A = 〈z, x〉 ∧ ∃y z = 〈x, y〉)) |
5 | excom 1741 | . . 3 ⊢ (∃z∃x(A = 〈z, x〉 ∧ ∃y z = 〈x, y〉) ↔ ∃x∃z(A = 〈z, x〉 ∧ ∃y z = 〈x, y〉)) | |
6 | excom 1741 | . . . . 5 ⊢ (∃y∃z(A = 〈z, x〉 ∧ z = 〈x, y〉) ↔ ∃z∃y(A = 〈z, x〉 ∧ z = 〈x, y〉)) | |
7 | exancom 1586 | . . . . . . 7 ⊢ (∃z(A = 〈z, x〉 ∧ z = 〈x, y〉) ↔ ∃z(z = 〈x, y〉 ∧ A = 〈z, x〉)) | |
8 | vex 2862 | . . . . . . . . 9 ⊢ x ∈ V | |
9 | vex 2862 | . . . . . . . . 9 ⊢ y ∈ V | |
10 | 8, 9 | opex 4588 | . . . . . . . 8 ⊢ 〈x, y〉 ∈ V |
11 | opeq1 4578 | . . . . . . . . 9 ⊢ (z = 〈x, y〉 → 〈z, x〉 = 〈〈x, y〉, x〉) | |
12 | 11 | eqeq2d 2364 | . . . . . . . 8 ⊢ (z = 〈x, y〉 → (A = 〈z, x〉 ↔ A = 〈〈x, y〉, x〉)) |
13 | 10, 12 | ceqsexv 2894 | . . . . . . 7 ⊢ (∃z(z = 〈x, y〉 ∧ A = 〈z, x〉) ↔ A = 〈〈x, y〉, x〉) |
14 | 7, 13 | bitri 240 | . . . . . 6 ⊢ (∃z(A = 〈z, x〉 ∧ z = 〈x, y〉) ↔ A = 〈〈x, y〉, x〉) |
15 | 14 | exbii 1582 | . . . . 5 ⊢ (∃y∃z(A = 〈z, x〉 ∧ z = 〈x, y〉) ↔ ∃y A = 〈〈x, y〉, x〉) |
16 | exdistr 1906 | . . . . 5 ⊢ (∃z∃y(A = 〈z, x〉 ∧ z = 〈x, y〉) ↔ ∃z(A = 〈z, x〉 ∧ ∃y z = 〈x, y〉)) | |
17 | 6, 15, 16 | 3bitr3ri 267 | . . . 4 ⊢ (∃z(A = 〈z, x〉 ∧ ∃y z = 〈x, y〉) ↔ ∃y A = 〈〈x, y〉, x〉) |
18 | 17 | exbii 1582 | . . 3 ⊢ (∃x∃z(A = 〈z, x〉 ∧ ∃y z = 〈x, y〉) ↔ ∃x∃y A = 〈〈x, y〉, x〉) |
19 | 5, 18 | bitri 240 | . 2 ⊢ (∃z∃x(A = 〈z, x〉 ∧ ∃y z = 〈x, y〉) ↔ ∃x∃y A = 〈〈x, y〉, x〉) |
20 | 4, 19 | bitri 240 | 1 ⊢ (A ∈ 1st ↔ ∃x∃y A = 〈〈x, y〉, x〉) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∧ wa 358 ∃wex 1541 = wceq 1642 ∈ wcel 1710 〈cop 4561 {copab 4622 1st c1st 4717 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4078 ax-xp 4079 ax-cnv 4080 ax-1c 4081 ax-sset 4082 ax-si 4083 ax-ins2 4084 ax-ins3 4085 ax-typlower 4086 ax-sn 4087 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-ne 2518 df-ral 2619 df-rex 2620 df-v 2861 df-sbc 3047 df-nin 3211 df-compl 3212 df-in 3213 df-un 3214 df-dif 3215 df-symdif 3216 df-ss 3259 df-nul 3551 df-if 3663 df-pw 3724 df-sn 3741 df-pr 3742 df-uni 3892 df-int 3927 df-opk 4058 df-1c 4136 df-pw1 4137 df-uni1 4138 df-xpk 4185 df-cnvk 4186 df-ins2k 4187 df-ins3k 4188 df-imak 4189 df-cok 4190 df-p6 4191 df-sik 4192 df-ssetk 4193 df-imagek 4194 df-idk 4195 df-addc 4378 df-nnc 4379 df-phi 4565 df-op 4566 df-opab 4623 df-1st 4723 |
This theorem is referenced by: br1stg 4730 |
Copyright terms: Public domain | W3C validator |