New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > brsnsi | GIF version |
Description: Binary relationship of singletons in a singleton image. (Contributed by SF, 9-Feb-2015.) |
Ref | Expression |
---|---|
brsnsi.1 | ⊢ A ∈ V |
brsnsi.2 | ⊢ B ∈ V |
Ref | Expression |
---|---|
brsnsi | ⊢ ({A} SI R{B} ↔ ARB) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snex 4112 | . . 3 ⊢ {A} ∈ V | |
2 | snex 4112 | . . 3 ⊢ {B} ∈ V | |
3 | eqeq1 2359 | . . . . . 6 ⊢ (z = {A} → (z = {x} ↔ {A} = {x})) | |
4 | eqcom 2355 | . . . . . . 7 ⊢ ({A} = {x} ↔ {x} = {A}) | |
5 | vex 2863 | . . . . . . . 8 ⊢ x ∈ V | |
6 | 5 | sneqb 3877 | . . . . . . 7 ⊢ ({x} = {A} ↔ x = A) |
7 | 4, 6 | bitri 240 | . . . . . 6 ⊢ ({A} = {x} ↔ x = A) |
8 | 3, 7 | syl6bb 252 | . . . . 5 ⊢ (z = {A} → (z = {x} ↔ x = A)) |
9 | 8 | 3anbi1d 1256 | . . . 4 ⊢ (z = {A} → ((z = {x} ∧ w = {y} ∧ xRy) ↔ (x = A ∧ w = {y} ∧ xRy))) |
10 | 9 | 2exbidv 1628 | . . 3 ⊢ (z = {A} → (∃x∃y(z = {x} ∧ w = {y} ∧ xRy) ↔ ∃x∃y(x = A ∧ w = {y} ∧ xRy))) |
11 | eqeq1 2359 | . . . . . 6 ⊢ (w = {B} → (w = {y} ↔ {B} = {y})) | |
12 | eqcom 2355 | . . . . . . 7 ⊢ ({B} = {y} ↔ {y} = {B}) | |
13 | vex 2863 | . . . . . . . 8 ⊢ y ∈ V | |
14 | 13 | sneqb 3877 | . . . . . . 7 ⊢ ({y} = {B} ↔ y = B) |
15 | 12, 14 | bitri 240 | . . . . . 6 ⊢ ({B} = {y} ↔ y = B) |
16 | 11, 15 | syl6bb 252 | . . . . 5 ⊢ (w = {B} → (w = {y} ↔ y = B)) |
17 | 16 | 3anbi2d 1257 | . . . 4 ⊢ (w = {B} → ((x = A ∧ w = {y} ∧ xRy) ↔ (x = A ∧ y = B ∧ xRy))) |
18 | 17 | 2exbidv 1628 | . . 3 ⊢ (w = {B} → (∃x∃y(x = A ∧ w = {y} ∧ xRy) ↔ ∃x∃y(x = A ∧ y = B ∧ xRy))) |
19 | df-si 4729 | . . 3 ⊢ SI R = {〈z, w〉 ∣ ∃x∃y(z = {x} ∧ w = {y} ∧ xRy)} | |
20 | 1, 2, 10, 18, 19 | brab 4710 | . 2 ⊢ ({A} SI R{B} ↔ ∃x∃y(x = A ∧ y = B ∧ xRy)) |
21 | brsnsi.1 | . . 3 ⊢ A ∈ V | |
22 | brsnsi.2 | . . 3 ⊢ B ∈ V | |
23 | breq1 4643 | . . 3 ⊢ (x = A → (xRy ↔ ARy)) | |
24 | breq2 4644 | . . 3 ⊢ (y = B → (ARy ↔ ARB)) | |
25 | 21, 22, 23, 24 | ceqsex2v 2897 | . 2 ⊢ (∃x∃y(x = A ∧ y = B ∧ xRy) ↔ ARB) |
26 | 20, 25 | bitri 240 | 1 ⊢ ({A} SI R{B} ↔ ARB) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∧ w3a 934 ∃wex 1541 = wceq 1642 ∈ wcel 1710 Vcvv 2860 {csn 3738 class class class wbr 4640 SI csi 4721 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-evenfin 4445 df-oddfin 4446 df-sfin 4447 df-spfin 4448 df-phi 4566 df-op 4567 df-proj1 4568 df-proj2 4569 df-opab 4624 df-br 4641 df-si 4729 |
This theorem is referenced by: opsnelsi 5775 pw1fnex 5853 tcfnex 6245 |
Copyright terms: Public domain | W3C validator |